Salience-Preserving Image Composition with Luminance Consistency

  • Zhenlong Du
  • Xueying Qin
  • Wei Hua
  • Hujun Bao
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4153)


Image composition is a frequently-used editing technique. Existed approaches rarely consider the issue of luminance consistency. In this paper, an image composition method with salience preservation is proposed, which focuses on how to achieve the luminance consistency. Our method includes salience determination, whitepoint correction and luminance adjustment. Salience depends not only on luminance, but also on chrominance, an approach fully exploiting the difference of luminance and chrominance is suggested. A whitepoint correction schema by aligning the principle color axes is presented. Meanwhile, the luminance consistency composition is formulated as a nonlinear optimization with respect to the salience constraint, hence the composition could achieve the consistent luminance and preserve the appropriate salience.


High Dynamic Range White Point Color Distance Image Composition Gradient Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gooch, A.A., Olsen, S.C., Tumblin, J., Gooch, B.: Color2Gray: Salience-Preserving color removal. In: Proc. of SIGGRAPH 2005 (2005)Google Scholar
  2. 2.
    Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson matting. In: Proc. of SIGGRAPH 2005 (2005)Google Scholar
  3. 3.
    Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 377–389. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: Proc. of SIGGRAPH 2004 (2004)Google Scholar
  5. 5.
    Pérez, P., Gangnet, M., Blake, A.: Poisson Image Editing. In: Proc. of SIGGRAPH 2003 (2003)Google Scholar
  6. 6.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. In: Proc. of SIGGRAPH 2002 (2002)Google Scholar
  7. 7.
    Tumblin, J., Turk, G.: LCIS: A boundary hierarchy for detail-preserving contrast reduction. In: Proc. of SIGGRAPH 2001 (2001)Google Scholar
  8. 8.
    Rubner, Y., Tomasi, C., Guibas, L.J.: The earth mover’s distance as a metric for image retrieval. IJCV 40(2), 99–121 (2000)MATHCrossRefGoogle Scholar
  9. 9.
    Debevec, P.E., Malik, J.: Recovering high dynamic range radiance maps from photographs. In: Proc. of SIGGRAPH 1997 (1997)Google Scholar
  10. 10.
    Weiss, Y.: Segmentation using eigenvectors: a unifying view. In: Proc. of ICCV 1999 (1999)Google Scholar
  11. 11.
    Itti, L., Koch, C.: Computational modeling of visual attention. Nature Reviews Neuroscience 2(3), 194–223 (2001)CrossRefGoogle Scholar
  12. 12.
    Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE PAMI 20(11), 1254–1259 (1998)Google Scholar
  13. 13.
    Rasche, K.: Re-coloring images for Gamuts of lower dimensions. In: Proc. of Eurographics 2005 (2005)Google Scholar
  14. 14.
    Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In: Proc. of SIGGRAPH 2002 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Zhenlong Du
    • 1
  • Xueying Qin
    • 1
  • Wei Hua
    • 1
  • Hujun Bao
    • 1
  1. 1.State Key Lab of CAD&CGZhejiang UniversityP.R. China

Personalised recommendations