Advertisement

Image and Fractal Information Processing for Large-Scale Chemoinformatics, Genomics Analyses and Pattern Discovery

  • Ilkka Havukkala
  • Lubica Benuskova
  • Shaoning Pang
  • Vishal Jain
  • Rene Kroon
  • Nikola Kasabov
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4146)

Abstract

Two promising approaches for handling large-scale biodata are presented and illustrated in several new contexts: molecular structure bitmap image processing for chemoinformatics, and fractal visualization methods for genome analyses. It is suggested that two-dimensional structure databases of bioactive molecules (e.g. proteins, drugs, folded RNAs), transformed to bitmap image databases, can be analysed by a variety of image processing methods, with an example of human microRNA folded 2D structures processed by Gabor filter. Another compact and efficient visualization method is comparison of huge amounts of genomic and proteomic data through fractal representation, with an example of analyzing oligomer frequencies in a bacterial phytoplasma genome. Bitmap visualization of bioinformatics data seems promising for complex parallel pattern discovery and large-scale genome comparisons, as powerful modern image processing methods can be applied to the 2D images.

Keywords

Fractal Representation Fractal Space Bitmap Image Chaos Game Representation Current Analysis Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Banville, D.L.: Mining the chemical structural information from the drug literature. Drug Discovery Today 11(1/2), 35–42 (2006)CrossRefGoogle Scholar
  2. 2.
  3. 3.
    Vinogradov, A.E.: Noncoding DNA, isochores and gene expression: nucleosome formation potential. Nucleic Acids Res. 33(2), 559–563 (2005)CrossRefGoogle Scholar
  4. 4.
  5. 5.
    Vlahovicek, K., et al.: CX, DPX and PRIDE: WWW servers for the analysis and comparison of protein 3D structures. Nucleic Acids Res. 1(33), W252–W254 (2005)CrossRefGoogle Scholar
  6. 6.
  7. 7.
    Vitkup, D., et al.: Completeness in structural genomics. Nature Struct. Biol. 8, 559–566 (2001)CrossRefGoogle Scholar
  8. 8.
    Washietl, S., et al.: Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome. Nature Biotechnol. 23(11), 1383–1390 (2005)CrossRefGoogle Scholar
  9. 9.
    Washietl, S., Hofacker, I.L., Stadler, P.F.P., Tino, P.: Fast and reliable prediction of noncoding RNAs. PNAS USA 102(7), 2454–2459 (2005)CrossRefGoogle Scholar
  10. 10.
    Ding, Y., Lawrence, C.E.: A statistical sampling algorithm for RNA secondary structure prediction. Nucleic Acids Res. 31, 7280–7301 (2003)CrossRefGoogle Scholar
  11. 11.
    Gardner, P.P., Giegerich, R.: A comprehensive comparison of comparative RNA structure prediction approaches. BMC Bioinformatics 5(140), 1–18 (2004)Google Scholar
  12. 12.
    Zaki, M.J.: Efficiently Mining Frequent Trees in a Forest: Algorithms and Applications. IEEE Trans. Knowl. Data Eng. 17(8), 1021–1035 (2005)CrossRefGoogle Scholar
  13. 13.
    Havukkala, I., Pang, S.N., Jain, V., Kasabov, N.: Classifying microRNAs by Gabor filter features from 2D structure bitmap images on a case study of human microRNAs. J. Comput. Theor. Nanosci. 2(4), 506–513 (2005)CrossRefGoogle Scholar
  14. 14.
    Mattick, J.S., Makunin, I.V.: Small regulatory RNAs in mammals. Hum. Mol. Genet. 14(1), R121–R132 (2005)CrossRefGoogle Scholar
  15. 15.
    Hofacker, I.: Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003)CrossRefGoogle Scholar
  16. 16.
    Frazer, K.A., et al.: VISTA: computational tools for comparative genomics. Nucleic Acids Res. 32, W273–W279 (2004)CrossRefGoogle Scholar
  17. 17.
    Brudno, M., et al.: Automated whole-genome multiple alignment of rat, mouse, and human. Genome Res. 14(4), 685–692 (2004)CrossRefGoogle Scholar
  18. 18.
    Jeffrey, H.J.: Chaos game representation of gene structure. Nucleic Acids Res. 18(8), 2163–2170 (1990)CrossRefGoogle Scholar
  19. 19.
    Fiser, A., Tusnady, G.E., Simon, I.: Chaos game representation of protein structures. J. Mol. Graphics 12, 302–304 (1994)CrossRefGoogle Scholar
  20. 20.
    Hao, B., Lee, H., Zhang, S.: Fractals related to long DNA sequences and complete genomes Chaos. Solitons and Fractals 11(6), 825–836 (2000)MATHCrossRefGoogle Scholar
  21. 21.
    Almeida, J.S., et al.: Analysis of genomic sequences by Chaos Game Representation. Bioinformatics 17(5), 429–437 (2001)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Tino, P.: Spatial representation of symbolic sequences through iterative function systems. IEEE Trans. Syst. Man Cybernet 29, 386–393 (1999)CrossRefGoogle Scholar
  23. 23.
    Bai, X., et al.: Living with genome instability: the adaptation of phytoplasmas to diverse environments of their insect and plant hosts. J. Bacteriol. 188, 3682–3696 (1999)CrossRefGoogle Scholar
  24. 24.
    Price, A.L., Jones, N.C., Pevzner, P.A.: De novo identification of repeat families in large genomes. Bioinformatics 21(suppl. 1), i351–i358 (2005)CrossRefGoogle Scholar
  25. 25.
    Aras, R.A., et al.: Extensive repetitive DNA facilitates prokaryotic genome plasticity. Proc. Natl. Acad. Sci. USA 100(23), 13579–135784 (1999)CrossRefGoogle Scholar
  26. 26.
    Saunders, N.J., et al.: Repeat-associated phase variable genes in the complete genome sequence of Neisseria meningitidis strain MC58. Molecular Microbiology 37(1), 207–215 (2000)CrossRefGoogle Scholar
  27. 27.
    Denoeud, F., Vergnaud, G.: Identification of polymorphic tandem repeats by direct comparison of genome sequence from different bacterial strains: a web-based resource. BMC Bioinformatics 5, 4 (2004)CrossRefGoogle Scholar
  28. 28.

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ilkka Havukkala
    • 1
  • Lubica Benuskova
    • 1
  • Shaoning Pang
    • 1
  • Vishal Jain
    • 1
  • Rene Kroon
    • 1
  • Nikola Kasabov
    • 1
  1. 1.Knowledge Engineering and Discovery Research InstituteAuckland University of TechnologyAucklandNew Zealand

Personalised recommendations