Advertisement

The Immune Epitope Database and Analysis Resource

  • A. Sette
  • H. H. Bui
  • J. Sidney
  • P. Bourne
  • S. Buus
  • W. Fleri
  • R. Kubo
  • O. Lund
  • D. Nemazee
  • J. V. Ponomarenko
  • M. Sathiamurthy
  • S. Stewart
  • S. Way
  • S. S. Wilson
  • B. Peters
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4146)

Abstract

Epitopes are defined as the molecular structures interacting with specific receptors of the immune system such as antibodies, MHC, and T cell receptor molecules. The Immune Epitope Database and Analysis Resource (IEDB, http://www.immuneepitope.org) is a database specifically devoted to immune epitope data. The database is populated with intrinsic and context-dependent epitope data curated from the scientific literature by immunologists, biochemists, and microbiologists. An analysis resource is linked to the database which hosts various bioinformatics tools to analyze epitope data as well as to predict de novo epitopes. The availability of the IEDB will facilitate the exploration of immunity to infectious diseases, allergies, autoimmune diseases, and cancer. The utility of the IEDB was recently demonstrated through a comprehensive analysis of all current information regarding antibody and T cell epitopes derived from influenza A and determining possible cross-reactivity among H5N1 avian flu and human flu viruses.

Keywords

Cell Epitope Enterprise Architecture Epitope Prediction Analysis Resource Antibody Epitope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Peters, B., Sidney, J., Bourne, P., Bui, H.H., Buus, S., Doh, G., Fleri, W., Kronenberg, M., Kubo, R., Lund, O., et al.: The design and implementation of the immune epitope database and analysis resource. Immunogenetics (2005)Google Scholar
  2. 2.
    Peters, B., Sidney, J., Bourne, P., Bui, H.H., Buus, S., Doh, G., Fleri, W., Kronenberg, M., Kubo, R., Lund, O., et al.: The immune epitope database and analysis resource: from vision to blueprint. PLoS Biol. 2005 3(3), e91 (2005)CrossRefGoogle Scholar
  3. 3.
    Sette, A., Fleri, W., Peters, B., Sathiamurthy, M., Bui, H.H., Wilson, S.: A roadmap for the immunomics of category A-C pathogens. Immunity 22(2), 155–161 (2005)CrossRefGoogle Scholar
  4. 4.
    Sathiamurthy, M., Peters, B., Bui, H.H., Sidney, J., Mokili, J., Wilson, S.S., Fleri, W., McGuinness, D.L., Bourne, P.E., Sette, A.: An ontology for immune epitopes: application to the design of a broad scope database of immune reactivities. Immunome Res. 1(1), 2 (2005)CrossRefGoogle Scholar
  5. 5.
    Bui, H.H., Sidney, J., Dinh, K., Southwood, S., Newman, M.J., et al.: Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7, 153 (2006)CrossRefGoogle Scholar
  6. 6.
    Blythe, M.J., Flower, D.R.: Benchmarking B cell epitope prediction: underperformance of existing methods. Protein Sci. 14, 246–248 (2005)CrossRefGoogle Scholar
  7. 7.
    Bui, H.H., Sidney, J., Peters, B., Sathiamurthy, M., Sinichi, A., et al.: Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57, 304–314 (2005)CrossRefGoogle Scholar
  8. 8.
    Peters, B., Sette, A.: Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6, 132 (2005)CrossRefGoogle Scholar
  9. 9.
    Buus, S., Lauemoller, S.L., Worning, P., Kesmir, C., Frimurer, T., et al.: Sensitive quantitative predictions of peptide-MHC binding by a ‘Query by Committee’ artificial neural network approach. Tissue Antigens 62, 378–384 (2003)CrossRefGoogle Scholar
  10. 10.
    Nielsen, M., Lundegaard, C., Worning, P., Lauemoller, S.L., Lamberth, K., et al.: Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12, 1007–1017 (2003)CrossRefGoogle Scholar
  11. 11.
    Peters, B., Bui, H.H., Frankild, S., Nielsen, M., Lundegaard, C., Kostem, E., Basch, D., Lamberth, K., Harndahl, M., Fleri, W., Wilson, S., Sidney, J., Lund, O., Buus, S., Sette, A.: A Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules. PLoS Comp. Bio. (in press, 2006)Google Scholar
  12. 12.
    Tenzer, S., Peters, B., Bulik, S., Schoor, O., Lemmel, C., et al.: Modeling the MHC class I pathway by combining predictions of proteasomal cleavage,TAP transport and MHC class I binding. Cell Mol. Life Sci. 62, 1025–1037 (2005)CrossRefGoogle Scholar
  13. 13.
    Peters, B., Bulik, S., Tampe, R., Van Endert, P.M., Holzhutter, H.G.: Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J. Immunol. 171, 1741–1749 (2003)Google Scholar
  14. 14.
    Dreams of flu data. Nature 440, 255–256 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • A. Sette
    • 1
  • H. H. Bui
    • 1
  • J. Sidney
    • 1
  • P. Bourne
    • 2
  • S. Buus
    • 3
  • W. Fleri
    • 1
  • R. Kubo
    • 1
    • 4
  • O. Lund
    • 5
  • D. Nemazee
    • 6
  • J. V. Ponomarenko
    • 2
  • M. Sathiamurthy
    • 1
  • S. Stewart
    • 7
  • S. Way
    • 7
  • S. S. Wilson
    • 1
  • B. Peters
    • 1
  1. 1.La Jolla Institute of Allergy and ImmunologyLa JollaUSA
  2. 2.San Diego Supercomputer CenterUniversity of CaliforniaSan Diego, La JollaUSA
  3. 3.University of CopenhagenCopenhagenDenmark
  4. 4.Gemini ScienceLa JollaUSA
  5. 5.Center for Biological Sequence AnalysisTechnical University of DenmarkLyngbyDenmark
  6. 6.The Scripps Research InstituteLa JollaUSA
  7. 7.Science Applications International CorporationSan DiegoUSA

Personalised recommendations