Lattice-Based Cryptography

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4117)


We describe some of the recent progress on lattice-based cryptography, starting from the seminal work of Ajtai, and ending with some recent constructions of very efficient cryptographic schemes.


Hash Function Lattice Vector Lattice Problem Quantum Algorithm Cyclic Lattice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261, 515–534 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Lenstra Jr, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8, 538–548 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Babai, L.: On Lovasz’ lattice reduction and the nearest lattice point problem. STACS 1985 6, 1–13 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Lagarias, J.C., Odlyzko, A.M.: Solving low-density subset sum problems. J. Assoc. Comput. Mach. 32, 229–246 (1985)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Coppersmith, D.: Finding small solutions to small degree polynomials. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 20–31. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice problems. Journal of Computer and System Sciences 60, 540–563 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Aharonov, D., Regev, O.: Lattice problems in NP intersect coNP. Journal of the ACM 52, 749–765 (2005) Preliminary version in FOCS 2004CrossRefMathSciNetGoogle Scholar
  8. 8.
    Khot, S.: Hardness of approximating the shortest vector problem in lattices. In: Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp. 126–135 (2004)Google Scholar
  9. 9.
    Ajtai, M.: Generating hard instances of lattice problems. In: Proc. 28th ACM Symp. on Theory of Computing, pp. 99–108 (1996), Available from ECCC at:
  10. 10.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. on Computing 26, 1484–1509 (1997)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Goldreich, O., Goldwasser, S., Halevi, S.: Public-key cryptosystems from lattice reduction problems. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 112–131. Springer, Heidelberg (1997)Google Scholar
  12. 12.
    Hoffstein, J., Pipher, J., Silverman, J.H.: NTRU: A ring-based public key cryptosystem. In: Buhler, J.P. (ed.) ANTS 1998. LNCS, vol. 1423, pp. 267–288. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  13. 13.
    Hoffstein, J., Howgrave-Graham, N., Pipher, J., Silverman, J.H., Whyte, W.: NTRUSIGN: Digital signatures using the NTRU lattice. In: Joye, M. (ed.) CT-RSA 2003. LNCS, vol. 2612, pp. 122–140. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Nguyên, P.Q., Stern, J.: The two faces of lattices in cryptology. In: Silverman, J.H. (ed.) CaLC 2001. LNCS, vol. 2146, pp. 146–180. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Kumar, R., Sivakumar, D.: Complexity of SVP – a reader’s digest. SIGACT News 32(3), 40–52 (2001)CrossRefGoogle Scholar
  16. 16.
    Micciancio, D.: Lattices in cryptography and cryptanalysis, Lecture notes of a course given in UC San Diego (2002)Google Scholar
  17. 17.
    Regev, O.: Lattices in computer science, Lecture notes of a course given in Tel Aviv University (2004)Google Scholar
  18. 18.
    Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective. The Kluwer International Series in Engineering and Computer Science, vol. 671. Kluwer Academic Publishers, Boston, Massachusetts (2002)zbMATHGoogle Scholar
  19. 19.
    Ajtai, M., Kumar, R., Sivakumar, D.: A sieve algorithm for the shortest lattice vector problem. In: Proc. 33rd ACM Symp. on Theory of Computing, pp. 601–610 (2001)Google Scholar
  20. 20.
    Lagarias, J.C., Lenstra Jr., H.W., Schnorr, C.P.: Korkin-Zolotarev bases and successive minima of a lattice and its reciprocal lattice. Combinatorica 10, 333–348 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Goldreich, O., Goldwasser, S., Halevi, S.: Collision-free hashing from lattice problems. Technical Report TR96-056, Electronic Colloquium on Computational Complexity (ECCC) (1996)Google Scholar
  22. 22.
    Cai, J.-Y., Nerurkar, A.: An improved worst-case to average-case connection for lattice problems. In: Proc. 38th IEEE Symp. on Found. of Comp. Science, pp. 468–477 (1997)Google Scholar
  23. 23.
    Micciancio, D.: Improved cryptographic hash functions with worst-case/average-case connection. In: Proc. 34th ACM Symp. on Theory of Computing (STOC), pp. 609–618 (2002)Google Scholar
  24. 24.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. In: Proc. 45th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp. 372–381 (2004)Google Scholar
  25. 25.
    Micciancio, D.: Generalized compact knapsacks, cyclic lattices, and efficient one-way functions from worst-case complexity assumptions. Computational Complexity 10(4), 333–348 (2006) (to appear, preliminary version in ECCC report TR04-095)MathSciNetGoogle Scholar
  26. 26.
    Lyubashevsky, V., Micciancio, D.: Generalized compact knapsacks are collision resistant. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 144–155. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  27. 27.
    Peikert, C., Rosen, A.: Efficient collision-resistant hashing from worst-case assumptions on cyclic lattices. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 145–166. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  28. 28.
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: Proc. 29th Annual IEEE Symp. on Foundations of Computer Science (FOCS), pp. 284–293 (1997)Google Scholar
  29. 29.
    Goldreich, O., Goldwasser, S., Halevi, S.: Eliminating Decryption Errors in the Ajtai-Dwork Cryptosystem. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 105–111. Springer, Heidelberg (1997)Google Scholar
  30. 30.
    Regev, O.: New lattice-based cryptographic constructions. Journal of the ACM 51, 899–942 (2004); Preliminary version in STOC (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Ajtai, M.: Representing hard lattices with O(n logn) bits. In: Proc. 37th Annual ACM Symp. on Theory of Computing (STOC) (2005)Google Scholar
  32. 32.
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: Proc. 37th ACM Symp. on Theory of Computing (STOC), pp. 84–93 (2005)Google Scholar
  33. 33.
    Banaszczyk, W.: New bounds in some transference theorems in the geometry of numbers. Mathematische Annalen 296, 625–635 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Nguyên, P.Q., Stern, J.: Cryptanalysis of the ajtai-dwork cryptosystem. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 223–242. Springer, Heidelberg (1998)Google Scholar
  35. 35.
    Schnorr, C.P.: Factoring integers and computing discrete logarithms via Diophantine approximation. In: Cai, J.-Y. (ed.) Advances in computational complexity. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 13, pp. 171–182. AMS (1993) (Preliminary version in Eurocrypt 1991)Google Scholar
  36. 36.
    Adleman, L.M.: Factoring and lattice reduction (unpublished manuscript, 1995)Google Scholar
  37. 37.
    Micciancio, D., Vadhan, S.P.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  38. 38.
    Dwork, C., Naor, M., Reingold, O.: Immunizing encryption schemes from decryption errors. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 342–360. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  39. 39.
    Klivans, A., Sherstov, A.: Cryptographic hardness results for learning intersections of halfspaces, Available as ECCC report TR06-057 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Tel Aviv UniversityIsrael

Personalised recommendations