Advertisement

Round-Optimal Composable Blind Signatures in the Common Reference String Model

  • Marc Fischlin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4117)

Abstract

We build concurrently executable blind signatures schemes in the common reference string model, based on general complexity assumptions, and with optimal round complexity. Namely, each interactive signature generation requires the requesting user and the issuing bank to transmit only one message each. We also put forward the definition of universally composable blind signature schemes, and show how to extend our concurrently executable blind signature protocol to derive such universally composable schemes in the common reference string model under general assumptions. While this protocol then guarantees very strong security properties when executed within larger protocols, it still supports signature generation in two moves.

Keywords

Signature Scheme Blind Signature Commitment Scheme Blind Signature Scheme Common Reference String 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abe, M.: A Secure Three-Move Blind Signature Scheme for Polynomially Many Signatures. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 136–151. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Abe, M., Fujisaki, E.: How to Date Blind Signatures. In: Kim, K.-c., Matsumoto, T. (eds.) ASIACRYPT 1996. LNCS, vol. 1163, pp. 244–251. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Namprempre, C., Pointcheval, D., Semanko, M.: The One-More-RSA-Inversion Problems and the Security of Chaum’s Blind Signature Scheme. Journal of Cryptology 16(3), 185–215 (2003)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Boldyreva, A.: Efficient Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp. 31–46. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  5. 5.
    Canetti, R.: Universally Composable Security: A new Paradigm for Cryptographic Protocols. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS) 2001. IEEE Computer Society Press, Los Alamitos (2001), eprint.iacr.org Google Scholar
  6. 6.
    Canetti, R.: On Universally Composable Notions of Security for Signature, Certification and Authentication. In: Proceedings of Computer Security Foundations Workshop (CSFW) 2004. IEEE Computer Society Press, Los Alamitos (2004); an updated version see, eprint.iacr.org Google Scholar
  7. 7.
    Canetti, R., Fischlin, M.: Universally Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. 8.
    Chaum, D.: Blind Signatures for Untraceable Payments. In: Advances in Cryptology 1981 - 1997, pp. 199–203. Plemum, New York (1983)Google Scholar
  9. 9.
    Camenisch, J.L., Koprowski, M., Warinschi, B.: Efficient Blind Signatures Without Random Oracles. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 134–148. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Canetti, R., Lindell, Y., Ostrovsky, R., Sahai, A.: Universally Composable Two-Party and Multi-Party Secure Computation. In: Proceedings of the Annual Symposium on the Theory of Computing (STOC) 2002, pp. 494–503. ACM Press, New York (2002)Google Scholar
  11. 11.
    De Santis, A., Di Crescenzo, G., Ostrovsky, R., Persiano, G., Sahai, A.: Robust Non-interactive Zero Knowledge. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 566–598. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Damgard, I., Groth, J.: Non-interactive and Reusable Non-Malleable Commitment Schemes. In: Proceedings of the Annual Symposium on the Theory of Computing (STOC) 2003, pp. 426–437. ACM Press, New York (2003)Google Scholar
  13. 13.
    De Santis, A., Persiano, G.: Zero-Knowledge Proofs of Knowledge Without Interaction. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS) 1992, pp. 427–436. IEEE Computer Society Press, Los Alamitos (1992)CrossRefGoogle Scholar
  14. 14.
    Fischlin, M.: Round-Optimal Composable Blind Signatures in the Common Reference String Model (full version) (2006), Available at: www.fischlin.de
  15. 15.
    Feige, U., Lapidot, D., Shamir, A.: Multiple NonInteractive Zero Knowledge Proofs Under General Assumption. SIAM Journal on Computing 29(1), 1–28 (1999)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Håstad, J., Impagliazzo, R., Levin, L., Luby, M.: A Pseudorandom Generator from any One-way Function. SIAM Journal on Computing 28(4), 1364–1396 (1999)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Juels, A., Luby, M., Ostrovsky, R.: Security of Blind Digital Signatures. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 150–164. Springer, Heidelberg (1997)Google Scholar
  18. 18.
    Kiayias, A., Hong-Sheng, Z.: Two-Round Concurrent Blind Signatures without Random Oracles. Number 2005/435 in Cryptology eprint archive (2005), eprint.iacr.org
  19. 19.
    Lindell, Y.: Bounded-Concurrent Secure Two-Party Computation Without Setup Assumptions. In: Proceedings of the Annual Symposium on the Theory of Computing (STOC) 2003, pp. 683–692. ACM Press, New York (2003)Google Scholar
  20. 20.
    Lindell, Y.: Lower Bounds for Concurrent Self Composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Lepinski, M., Micali, S., Shelat, A.: Fair-zero knowledge. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 245–263. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Naor, M.: Bit Commitment Using Pseudo-Randomness. Journal of Cryptology 4(2), 151–158 (1991)MATHCrossRefGoogle Scholar
  23. 23.
    Naor, M., Yung, M.: Universal One-Way Hash Functions and Their Cryptographic Applications. In: Proceedings of the Annual Symposium on the Theory of Computing (STOC) 1989, pp. 33–43. ACM Press, New York (1989)Google Scholar
  24. 24.
    Okamoto, T.: Efficient Blind and Partially Blind Signatures Without Random Oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 80–99. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  25. 25.
    Pointcheval, D.: Strengthened Security for Blind Signatures. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 391–405. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  26. 26.
    Pointcheval, D., Stern, J.: Security Arguments for Digital Signatures and Blind Signatures. Journal of Cryptology 13(3), 361–396 (2000)MATHCrossRefGoogle Scholar
  27. 27.
    Rompel, J.: One-Way Functions are Necessary and Sufficient for Secure Signatures. In: Proceedings of the Annual Symposium on the Theory of Computing (STOC) 1999, pp. 387–394. ACM Press, New York (1990)Google Scholar
  28. 28.
    Sahai, A.: Non-Malleable Non-Interactive Zero Knowledge and Adaptive Chosen-Ciphertext Security. In: Proceedings of the Annual Symposium on Foundations of Computer Science (FOCS) 1999. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marc Fischlin
    • 1
  1. 1.Darmstadt University of TechnologyGermany

Personalised recommendations