The Number Field Sieve in the Medium Prime Case

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4117)


In this paper, we study several variations of the number field sieve to compute discrete logarithms in finite fields of the form \({\mathbb F}_{p^n}\), with p a medium to large prime. We show that when n is not too large, this yields a \(L_{p^n}(1/3)\) algorithm with efficiency similar to that of the regular number field sieve over prime fields. This approach complements the recent results of Joux and Lercier on the function field sieve. Combining both results, we deduce that computing discrete logarithms have heuristic complexity \(L_{p^n}(1/3)\) in all finite fields. To illustrate the efficiency of our algorithm, we computed discrete logarithms in a 120-digit finite field \({\mathbb F}_{p^3}\).


Prime Ideal Discrete Logarithm Discrete Logarithm Problem Cyclic Number Coprime Integer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adleman, L.M., DeMarrais, J.: A subexponential algorithm for discrete logarithms over all finite fields. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 147–158. Springer, Heidelberg (1994)Google Scholar
  2. 2.
    Adleman, L., DeMarrais, J.: A subexponential algorithm for discrete logarithms over all finite fields. Math. Comp. 61(203), 1–15 (2003)CrossRefMathSciNetzbMATHGoogle Scholar
  3. 3.
    Adleman, L.M.: The function field sieve. In: Huang, M.-D.A., Adleman, L.M. (eds.) ANTS 1994. LNCS, vol. 877, pp. 108–121. Springer, Heidelberg (1994)Google Scholar
  4. 4.
    Adleman, L.M., Huang, M.A.: Function field sieve method for discrete logarithms over finite fields. In: Information and Computation, vol. 151, pp. 5–16. Academic Press, London (1999)Google Scholar
  5. 5.
    Canfield, E.R., Erdős, P., Pomerance, C.: On a problem of Oppenheim concerning factorisatio numerorum. J. Number Theory 17(1), 1–28 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Cohen, H.: A course in computational algebraic number theory. Graduate Texts in Mathematics, vol. 138. Springer, Berlin (1993)zbMATHGoogle Scholar
  7. 7.
    Gordon, D.M.: Discrete logarithms in GF(p) using the number field sieve. SIAM J. Discrete Math. 6(1), 124–138 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Granger, R., Holt, A.J., Page, D.L., Smart, N.P., Vercauteren, F.: Function field sieve in characteristic three. In: Buell, D.A. (ed.) ANTS 2004. LNCS, vol. 3076, pp. 223–234. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Granger, R., Vercauteren, F.: On the discrete logarithm problem on algebraic tori. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 66–85. Springer, Heidelberg (2005)Google Scholar
  10. 10.
    Ivić, A., Tenenbaum, G.: Local densities over integers free of large prime factors. Quart. J. Math. Oxford Ser. (2) 37(148), 401–417 (1986)zbMATHMathSciNetGoogle Scholar
  11. 11.
    Joux, A., Lercier, R.: The function field sieve is quite special. In: Fieker, C., Kohel, D.R. (eds.) ANTS 2002. LNCS, vol. 2369, pp. 431–445. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  12. 12.
    Joux, A., Lercier, R.: Improvements to the general number field sieve for discrete logarithms in prime fields. A comparison with the gaussian integer method. Math. Comp. 72, 953–967 (2003)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Joux, A., Lercier, R.: The function field sieve in the medium prime case. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 254–270. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Lenstra, A.K., Lenstra Jr., H.W., Lovász, L.: Factoring polynomials with rational coefficients. Math. Ann. 261(4), 515–534 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lercier, R., Vercauteren, F.: Discrete logarithms in \(\mathbb{F}_{p^{18}}\) - 101 digits. NMBRTHRY mailing list (June 2005)Google Scholar
  16. 16.
    Maurer, U.M., Yacobi, Y.: A non-interactive public-key distribution system. Des. Codes Cryptogr. 9(3), 305–316 (1996)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Neukirch, J.: Algebraic number theory. Grundlehren der Mathematischen Wissenschaften, vol. 322. Springer, Berlin (1999)zbMATHGoogle Scholar
  18. 18.
    Schirokauer, O.: Discrete logarithms and local units. Philos. Trans. Roy. Soc. London Ser. A 345(1676), 409–423 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Schirokauer, O.: Virtual logarithms. J. Algorithms 57(2), 140–147 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Schirokauer, O., Weber, D., Denny, T.: Discrete logarithms: the effectiveness of the index calculus method. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 337–361. Springer, Heidelberg (1996)Google Scholar
  21. 21.
    Weber, D.: Computing discrete logarithms with the general number field sieve. In: Cohen, H. (ed.) ANTS 1996. LNCS, vol. 1122, pp. 391–403. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.DGA 
  2. 2.CELARBruzFrance
  3. 3.PRISMUniversité de Versailles St-Quentin-en-YvelinesVersaillesFrance
  4. 4.Dept. Computer ScienceUniversity of BristolBristolUnited Kingdom
  5. 5.Department of Electrical EngineeringUniversity of LeuvenLeuven-HeverleeBelgium

Personalised recommendations