Advertisement

Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4117)

Abstract

There are several candidate semantically secure encryption schemes, yet in many applications non-malleability of encryptions is crucial. We show how to transform any semantically secure encryption scheme into one that is non-malleable for arbitrarily many messages.

Keywords

Public-key Encryption Semantic Security Non-malleability Non-interactive Zero-knowledge Proofs 

References

  1. [AD97]
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC, pp. 284–293 (1997)Google Scholar
  2. [BDPR98]
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998)Google Scholar
  3. [Blu86]
    Blum, M.: How to prove a theorem so no one can claim it. In: Proc. of The International Congress of Mathematicians, pp. 1444–1451 (1986)Google Scholar
  4. [BS99]
    Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two notions, and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)Google Scholar
  5. [CD00]
    Camenisch, J.L., Damgård, I.B.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. [CDS94]
    Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  7. [CS98]
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  8. [CS02]
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. [DDN00]
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  10. [Dwo99]
    Dwork, C.: The non-malleability lectures. Course notes for Stanford CS 359 (1999), http://theory.stanford.edu/~gdurf/cs359-s99/
  11. [ES02]
    Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryption schemes secure against adaptive chosen-ciphertext attack. ePrint Archive 2002/042 (2002)Google Scholar
  12. [GL03]
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  14. [Gol04]
    Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  15. [KMO89]
    Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs. In: FOCS, pp. 474–479 (1989)Google Scholar
  16. [Lam79]
    Lamport, L.: Constructing digital signatures from a one-way function. Technical Report CSL-98, SRI International (October 1979)Google Scholar
  17. [Nao91]
    Naor: Bit commitment using pseudorandomness. J. of Cryptology 4 (1991)Google Scholar
  18. [Nao04]
    Naor, M.: A taxonomy of encryption scheme security (2004)Google Scholar
  19. [PS05]
    Pass, R., Shelat, A.: Unconditional characterizations of non-interactive zero-knowledge. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 118–134. Springer, Heidelberg (2005)Google Scholar
  20. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  21. [Rom90]
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC, pp. 387–394 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  1. 1.Cornell University 
  2. 2.IBM ZRL 
  3. 3.MIT 

Personalised recommendations