Construction of a Non-malleable Encryption Scheme from Any Semantically Secure One

  • Rafael Pass
  • abhi shelat
  • Vinod Vaikuntanathan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4117)

Abstract

There are several candidate semantically secure encryption schemes, yet in many applications non-malleability of encryptions is crucial. We show how to transform any semantically secure encryption scheme into one that is non-malleable for arbitrarily many messages.

Keywords

Public-key Encryption Semantic Security Non-malleability Non-interactive Zero-knowledge Proofs 

References

  1. [AD97]
    Ajtai, M., Dwork, C.: A public-key cryptosystem with worst-case/average-case equivalence. In: STOC, pp. 284–293 (1997)Google Scholar
  2. [BDPR98]
    Bellare, M., Desai, A., Pointcheval, D., Rogaway, P.: Relations among notions of security for public-key encryption schemes. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, p. 26. Springer, Heidelberg (1998)Google Scholar
  3. [Blu86]
    Blum, M.: How to prove a theorem so no one can claim it. In: Proc. of The International Congress of Mathematicians, pp. 1444–1451 (1986)Google Scholar
  4. [BS99]
    Bellare, M., Sahai, A.: Non-malleable encryption: Equivalence between two notions, and an indistinguishability-based characterization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 519–536. Springer, Heidelberg (1999)Google Scholar
  5. [CD00]
    Camenisch, J.L., Damgård, I.B.: Verifiable encryption, group encryption, and their applications to separable group signatures and signature sharing schemes. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 331–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  6. [CDS94]
    Cramer, R., Damgård, I.B., Schoenmakers, B.: Proof of partial knowledge and simplified design of witness hiding protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)Google Scholar
  7. [CS98]
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)Google Scholar
  8. [CS02]
    Cramer, R., Shoup, V.: Universal hash proofs and a paradigm for adaptive chosen ciphertext secure public-key encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  9. [DDN00]
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MATHCrossRefMathSciNetGoogle Scholar
  10. [Dwo99]
    Dwork, C.: The non-malleability lectures. Course notes for Stanford CS 359 (1999), http://theory.stanford.edu/~gdurf/cs359-s99/
  11. [ES02]
    Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryption schemes secure against adaptive chosen-ciphertext attack. ePrint Archive 2002/042 (2002)Google Scholar
  12. [GL03]
    Gennaro, R., Lindell, Y.: A framework for password-based authenticated key exchange. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 524–543. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. [GM84]
    Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)MATHCrossRefMathSciNetGoogle Scholar
  14. [Gol04]
    Goldreich, O.: Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (2004)MATHCrossRefGoogle Scholar
  15. [KMO89]
    Kilian, J., Micali, S., Ostrovsky, R.: Minimum resource zero-knowledge proofs. In: FOCS, pp. 474–479 (1989)Google Scholar
  16. [Lam79]
    Lamport, L.: Constructing digital signatures from a one-way function. Technical Report CSL-98, SRI International (October 1979)Google Scholar
  17. [Nao91]
    Naor: Bit commitment using pseudorandomness. J. of Cryptology 4 (1991)Google Scholar
  18. [Nao04]
    Naor, M.: A taxonomy of encryption scheme security (2004)Google Scholar
  19. [PS05]
    Pass, R., Shelat, A.: Unconditional characterizations of non-interactive zero-knowledge. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 118–134. Springer, Heidelberg (2005)Google Scholar
  20. [Reg05]
    Regev, O.: On lattices, learning with errors, random linear codes, and cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  21. [Rom90]
    Rompel, J.: One-way functions are necessary and sufficient for secure signatures. In: STOC, pp. 387–394 (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Rafael Pass
    • 1
  • abhi shelat
    • 2
  • Vinod Vaikuntanathan
    • 3
  1. 1.Cornell University 
  2. 2.IBM ZRL 
  3. 3.MIT 

Personalised recommendations