SMT Techniques for Fast Predicate Abstraction

  • Shuvendu K. Lahiri
  • Robert Nieuwenhuis
  • Albert Oliveras
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4144)


Predicate abstraction is a technique for automatically extracting finite-state abstractions for systems with potentially infinite state space. The fundamental operation in predicate abstraction is to compute the best approximation of a Boolean formula ϕ over a set of predicatesP. In this work, we demonstrate the use for this operation of a decision procedure based on the DPLL(T) framework for SAT Modulo Theories (SMT). The new algorithm is based on a careful generation of the set of all satisfying assignments over a set of predicates. It consistently outperforms previous methods by a factor of at least 20, on a diverse set of hardware and software verification benchmarks. We report detailed analysis of the results and the impact of a number of variations of the techniques. We also propose and evaluate a scheme for incremental refinement of approximations for predicate abstraction in the above framework.


Boolean Formula Satisfying Assignment Predicate Abstraction Prime Implicants Cube Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BCDR04]
    Ball, T., Cook, B., Das, S., Rajamani, S.K.: Refining Approximations in Software Predicate Abstraction. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 388–403. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. [BCLZ04]
    Ball, T., Cook, B., Lahiri, S.K., Zhang, L.: Zapato: Automatic theorem proving for predicate abstraction refinement. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 457–461. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. [BdMS05]
    Barrett, C., de Moura, L., Stump, A.: SMT-COMP: Satisfiability Modulo Theories Competition. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 20–23. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. [BMMR01]
    Ball, T., Majumdar, R., Millstein, T., Rajamani, S.K.: Automatic predicate abstraction of C programs. In: PLDI 2001.SIGPLAN Notices, vol. 36(5) (May 2001)Google Scholar
  5. [CC77]
    Cousot, P., Cousot, R.: Abstract interpretation: A Unified Lattice Model for the Static Analysis of Programs by Construction or Approximation of Fixpoints. In: POPL 1977. ACM Press, New York (1977)Google Scholar
  6. [CCG+03]
    Chaki, S., Clarke, E.M., Groce, A., Jha, S., Veith, H.: Modular Verification of Software Components in C. In: ICSE 2003, pp. 385–395. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  7. [CKSY04]
    Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: Predicate abstraction of ANSI–C programs using SAT. In: FMSD 2004, vol. 25 (2004)Google Scholar
  8. [CUD]
    CUDD: CU Decision Diagram Package, Available at:
  9. [DD01]
    Das, S., Dill, D.: Successive approximation of abstract transition relations. In: LICS 2001, pp. 51–60. IEEE Computer Society, Los Alamitos (2001)Google Scholar
  10. [DDP99]
    Das, S., Dill, D.L., Park, S.: Experience with predicate abstraction. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 160–171. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  11. [FQ02]
    Flanagan, C., Qadeer, S.: Predicate abstraction for software verification. In: POPL 2002, pp. 191–202. ACM, New York (2002)CrossRefGoogle Scholar
  12. [GSY04]
    Grumberg, O., Schuster, A., Yadgar, A.: Memory efficient all-solutions sat solver and its application for reachability analysis. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol. 3312, pp. 275–289. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. [GHN+04]
    Ganzinger, H., Hagen, G., Nieuwenhuis, R., Oliveras, A., Tinelli, C.: DPLL(T): Fast Decision Procedures. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 175–188. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. [GS97]
    Graf, S., Saïdi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997)Google Scholar
  15. [HJMS02]
    Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy Abstraction. In: POPL 2002, pp. 58–70. ACM Press, New York (2002)CrossRefGoogle Scholar
  16. [JHS05]
    Jin, H., Han, H., Somenzi, F.: Efficient conflict analysis for finding all satisfying assignments of a boolean circuit. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 287–300. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. [JM05]
    Jhala, R., McMillan, K.L.: Interpolant based transition relation approximation. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 39–51. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. [LB04]
    Lahiri, S.K., Bryant, R.E.: Constructing Quantified Invariants via Predicate Abstraction. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 267–281. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. [LBC03]
    Lahiri, S.K., Bryant, R.E., Cook, B.: A symbolic approach to predicate abstraction. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 141–153. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. [LBC05]
    Lahiri, S.K., Ball, T., Cook, B.: Predicate abstraction via symbolic decision procedures. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 24–38. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. [LQ06]
    Lahiri, S., Qadeer, S.: Verifying properties of well-founded linked lists. In: POPL 2006, pp. 115–126. ACM, New York (2006)CrossRefGoogle Scholar
  22. [NO05a]
    Nieuwenhuis, R., Oliveras, A.: Decision procedures for SAT, SAT Modulo Theories and Beyond. The BarcelogicTools (Invited Paper). In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, pp. 23–46. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. [NO05b]
    Nieuwenhuis, R., Oliveras, A.: DPLL(T) with Exhaustive Theory Propagation and its Application to Difference Logic. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 321–334. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. [NOT05]
    Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Abstract DPLL and Abstract DPLL Modulo Theories. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 36–50. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. [SS99]
    Saïdi, H., Shankar, N.: Abstract and model check while you prove. In: Halbwachs, N., Peled, D.A. (eds.) CAV 1999. LNCS, vol. 1633, pp. 443–454. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  26. [TR05]
    Tinelli, C., Ranise, S.: SMT-LIB: The Satisfiability Modulo Theories Library (July 2005),
  27. [ZM03]
    Zhang, L., Malik, S.: Validating sat solvers using an independent resolution-based checker. In: DATE 2003, pp. 10880–10885. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  28. [ZMMM01]
    Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in a Boolean satisfiability solver. In: ICCAD 2001, pp. 279–285 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shuvendu K. Lahiri
    • 1
  • Robert Nieuwenhuis
    • 2
  • Albert Oliveras
    • 2
  1. 1.Microsoft Research 
  2. 2.Technical Univ. of CataloniaBarcelona

Personalised recommendations