Advertisement

Termination of Integer Linear Programs

  • Mark Braverman
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4144)

Abstract

We show that termination of a simple class of linear loops over the integers is decidable. Namely we show that termination of deterministic linear loops is decidable over the integers in the homogeneous case, and over the rationals in the general case. This is done by analyzing the powers of a matrix symbolically using its eigenvalues. Our results generalize the work of Tiwari [Tiw04], where similar results were derived for termination over the reals. We also gain some insights into termination of non-homogeneous integer programs, that are very common in practice.

Keywords

Rational Point Integer Linear Program Convex Cone Algebraic Number Homogeneous Case 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. [BPR03]
    Basu, S., Pollack, R., Roy, M.F.: Algorithms in Real Algebraic Geometry. Springer, Heidelberg (2003)MATHGoogle Scholar
  2. [Bhu93]
    Bhubaneswar, M.: Algorithmic Algebra. Springer, Heidelberg (1993)MATHGoogle Scholar
  3. [BBK+01]
    Blondel, V.D., Bournez, O., Koiran, P., Papadimitriou, C.H., Tsitsiklis, J.N.: Deciding stability and mortality of piecewise affine dynamical system. Theoretical Computer Science 255(1–2), 687–696 (2001)MATHCrossRefMathSciNetGoogle Scholar
  4. [BMP05a]
    Bradley, A.R., Manna, Z., Simpa, H.B.: Linear ranking with reachability. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 491–504. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. [BMP05b]
    Bradley, A.R., Manna, Z., Simpa, H.B.: Termination analysis of integer linear loops. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 488–502. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. [CSS03]
    Colón, M.A., Sankaranarayanan, S., Simpa, H.B.: Linear invariant generation using non-linear constraint solving. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 420–432. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  7. [HK71]
    Hoffman, K., Kunze, R.: Linear Algebra, 2nd edn. Prentice-Hall, Englewood Cliffs (1971)MATHGoogle Scholar
  8. [Loos83]
    Loos, R.: Computing in Algebraic Extensions. In: Buchberger, B., Collins, G.E., et al. (eds.) Computer Algebra: Symbolic and Algebraic Computation, 2nd edn., pp. 173–188. Springer, Heidelberg (1983)Google Scholar
  9. [Mat93]
    Matiyasevich, Y.: Hilbert’s Tenth Problem. The MIT Press, Cambridge (1993)Google Scholar
  10. [PR04]
    Podelski, A., Rybalchenko, A.: A complete method for synthesis of linear ranking functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. [Tar51]
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)MATHGoogle Scholar
  12. [Tiw04]
    Tiwari, A.: Termination of linear programs. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 70–82. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  13. [Yap00]
    Yap, C.K.: Fundamental Problems of Algorithmic Algebra. Oxford University Press, Oxford (2000)MATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mark Braverman
    • 1
  1. 1.Department of Computer ScienceUniversity of Toronto 

Personalised recommendations