Advertisement

Don’t Care Words with an Application to the Automata-Based Approach for Real Addition

(Extended Abstract)
  • Jochen Eisinger
  • Felix Klaedtke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4144)

Abstract

Automata are a useful tool in infinite-state model checking, since they can represent infinite sets of integers and reals. However, analogous to the use of bdds to represent finite sets, the sizes of the automata are an obstacle in the automata-based set representation. In this paper, we generalize the notion of “don’t cares” for bdds to word languages as a means to reduce the automata sizes. We show that the minimal weak deterministic Büchi automaton (wdba) with respect to a given don’t care set, under certain restrictions, is uniquely determined and can be efficiently constructed. We apply don’t cares to improve the efficiency of a decision procedure for the first-order logic over the mixed linear arithmetic over the integers and the reals based on wdbas.

Keywords

Model Check Decision Procedure Reachable State Hybrid Automaton Real Addition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: Fast acceleration of symbolic transition systems. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 118–121. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  2. 2.
    Bartzis, C., Bultan, T.: Widening arithmetic automata. In: Alur, R., Peled, D.A. (eds.) CAV 2004. LNCS, vol. 3114, pp. 321–333. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Boigelot, B., Bronne, L., Rassart, S.: An improved reachability analysis method for strongly linear hybrid systems. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 167–178. Springer, Heidelberg (1997)Google Scholar
  4. 4.
    Boigelot, B., Herbreteau, F., Jodogne, S.: Hybrid acceleration using real vector automata. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 193–205. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM ToCL 6, 614–633 (2005)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Boigelot, B., Latour, L.: Counting the solutions of Presburger equations without enumerating them. TCS 313, 17–29 (2004)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Boigelot, B., Legay, A., Wolper, P.: Omega-regular model checking. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 561–575. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Büchi, J.: Weak second-order arithmetic and finite automata. Zeitschrift der mathematischen Logik und Grundlagen der Mathematik 6, 66–92 (1960)MATHCrossRefGoogle Scholar
  9. 9.
    On a decision method in restricted second order arithmetic. In: Logic, Methodology and Philosophy of Science. Stanford University Press, pp. 1–11 (1962)Google Scholar
  10. 10.
    Eisinger, J., Klaedtke, F.: Don’t care words with an application to the automata-based approach for real addition, Tech. Rep. 223, Institut für Informatik, Albert-Ludwigs-Universität Freiburg (2006)Google Scholar
  11. 11.
    Henzinger, T.: The theory of hybrid automata. In: LICS 1996, pp. 278–292 (1996)Google Scholar
  12. 12.
    Hong, Y., Beerel, P.A., Burch, J.R., McMillan, K.L.: Safe BDD minimization using don’t cares. In: DAC 1997, pp. 208–213. ACM Press, New York (1997)CrossRefGoogle Scholar
  13. 13.
    Hopcroft, J.E.: An n logn algorithm for minimizing the states in a finite automaton. In: Theory of Machines and Computations, pp. 189–196 (1971)Google Scholar
  14. 14.
    Kupferman, O., Vardi, M.: Weak alternating automata are not that weak. ACM ToCL 2, 408–429 (2001)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    LASH, The Liège Automata-based Symbolic Handler, http://www.montefiore.ulg.ac.be/~boigelot/research/lash/
  16. 16.
    Löding, C.: Efficient minimization of deterministic weak ω-automata. IPL 79, 105–109 (2001)MATHCrossRefGoogle Scholar
  17. 17.
    McMillan, K.L.: Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht (1993)MATHGoogle Scholar
  18. 18.
    Staiger, L., Wagner, K.: Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen regulärer Folgenmengen. Elektronische Informationsverarbeitung und Kybernetik 10, 379–392 (1974)MATHMathSciNetGoogle Scholar
  19. 19.
    Yavuz-Kahveci, T., Bartzis, C., Bultan, T.: Action language verifier, extended. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005. LNCS, vol. 3576, pp. 413–417. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jochen Eisinger
    • 1
  • Felix Klaedtke
    • 2
  1. 1.Faculty of Applied SciencesAlbert-Ludwigs-Universität FreiburgGermany
  2. 2.Department of Computer ScienceETH ZurichSwitzerland

Personalised recommendations