Welcome to the Jungle: A Subjective Guide to Mobile Process Calculi

  • Uwe Nestmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4137)


Almost 30 years ago, the research on process calculi gained a lot of momentum with the invention of ACP, CCS and CSP. Later on, but also already 20 years ago, researchers started to consider so-called mobile variants of process calculi, in which communication channels were themselves treated as the exchanged data. The original Pi us arose out of a reformulation and extension of CCS. In turn, it boosted the invention and study of a whole zoo of further process calculi.

In this tutorial, we provide a bird’s-eye view on the jungle of results, techniques and subtleties about mobile process calculi. Next to a rough overview on the zoo of calculi, this includes the coverage of both semantic and pragmatic aspects, ranging from notions of equivalence and expressiveness to challenging application domains.


Expressive Power Mobile Process Label Semantic Lambda Calculus Process Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AF01]
    Abadi, M., Fournet, C.: Mobile Values, New Names, and Secure Communication. In: Proceedings of POPL 2001, pp. 104–115. ACM Press, New York (2001)Google Scholar
  2. [AG99]
    Abadi, M., Gordon, A.D.: A Calculus for Cryptographic Protocols: The Spi Calculus. Information and Computation 148(1), 1–70 (1999)CrossRefMathSciNetMATHGoogle Scholar
  3. [AT04]
    Agha, G.A., Thati, P.: An Algebraic Theory of Actors and Its Application to a Simple Object-Based Language. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 26–57. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. [Ber04]
    Berger, M.: Basic Theory of Reduction Congruence for Two Timed Asynchronous π-Calculi. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 115–130. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. [Bou92]
    Boudol, G.: Asynchrony and the π-calculus (Note). Rapport de Recherche 1702, INRIA Sophia-Antipolis (May 1992)Google Scholar
  6. [CG00]
    Cardelli, L., Gordon, A.D.: Mobile Ambients. Theoretical Computer Science 240(1), 177–213 (2000)CrossRefMathSciNetMATHGoogle Scholar
  7. [Dal01]
    Dal-Zilio, S.: Mobile Processes: A Commented Bibliography. In: Cassez, F., Jard, C., Rozoy, B., Dermot, M. (eds.) MOVEP 2000. LNCS, vol. 2067, pp. 206–222. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  8. [DL04]
    Danos, V., Laneve, C.: Formal Molecular Biology. Theoretical Computer Science 325(1), 69–110 (2004)CrossRefMathSciNetMATHGoogle Scholar
  9. [EN86]
    Engberg, U., Nielsen, M.: A Calculus of Communicating Systems with Label-passing. Technical Report DAIMI PB-208, Computer Science Department, University of Aarhus, Denmark (1986)Google Scholar
  10. [FG96]
    Fournet, C., Gonthier, G.: The Reflexive Chemical Abstract Machine and the Join-Calculus. In: Proceedings of POPL 1996, pp. 372–385. ACM Press, New York (1996)CrossRefGoogle Scholar
  11. [FG04]
    Fournet, C., Gonthier, G.: A Hierarchy of Equivalences for Asynchronous Calculi. Journal of Logic and Algebraic Programming 63(1), 131–173 (2004)CrossRefMathSciNetGoogle Scholar
  12. [Gla93]
    Glabbeek, R.: The Linear Time – Branching Time Spectrum II: The semantics of sequential systems with silent moves (Extended Abstract). In: Best, E. (ed.) CONCUR 1993. LNCS, vol. 715, pp. 66–81. Springer, Heidelberg (1993)Google Scholar
  13. [Gor02]
    Gordon, A.D.: Notes on Nominal Calculi for Security and Mobility. In: Focardi, R., Gorrieri, R. (eds.) FOSAD 2000. LNCS, vol. 2171, pp. 262–330. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. [HP00]
    Herescu, O.M., Palamidessi, C.: Probabilistic Asynchronous π-Calculus. In: Tiuryn, J. (ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 146–160. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. [HT92]
    Honda, K., Tokoro, M.: On Asynchronous Communication Semantics. In: Tokoro, M., Wegner, P., Nierstrasz, O. (eds.) ECOOP-WS 1991. LNCS, vol. 612, pp. 21–51. Springer, Heidelberg (1992)Google Scholar
  16. [HY95]
    Honda, K., Yoshida, N.: On Reduction-Based Process Semantics. Theoretical Computer Science 152(2) 437–486 (1995); In: Shyamasundar, R.K. (ed.) Proceedings of FSTTCS 1993. LNCS, vol. 761, pp. 437–486. Springer, Heidelberg (1993) (extract appeared)Google Scholar
  17. [Ing94]
    Ingólfsdóttir, A.: Semantic Models for Communicating Processes with Value-Passing. PhD thesis, University of Sussex (1994)Google Scholar
  18. [Mil99]
    Milner, R.: Communicating and Mobile Systems: the π-Calculus. Cambridge University Press, Cambridge (1999)Google Scholar
  19. [MPW92]
    Milner, R., Parrow, J., Walker, D.: A Calculus of Mobile Processes, Part I/II. Information and Computation 100, 1–77 (1992)CrossRefMathSciNetMATHGoogle Scholar
  20. [MS92]
    Milner, R., Sangiorgi, D.: Barbed Bisimulation. In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 685–695. Springer, Heidelberg (1992)Google Scholar
  21. [MS04]
    Merro, M., Sangiorgi, D.: On Asynchrony in Name-Passing Calculi. Mathematical Structures in Computer Science 14(5), 715–767 (2004)CrossRefMathSciNetMATHGoogle Scholar
  22. [Nes]
    Nestmann, U.: Calculi for Mobile Processes,
  23. [NV98]
    Nestmann, U., Victor, B.: Calculi for Mobile Processes: Bibliography and Web Pages. EATCS Bulletin 64, 139–144 (1998)Google Scholar
  24. [Pal03]
    Palamidessi, C.: Comparing the Expressive Power of the Synchronous and the Asynchronous π-calculus. Mathematical Structures in Computer Science 13(5), 685–719 (2003)CrossRefMathSciNetGoogle Scholar
  25. [Par01]
    Parrow, J.: An Introduction to the pi-Calculus. In: Handbook of Process Algebra, pp. 479–543. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  26. [Pie97]
    Pierce, B.C.: Foundational Calculi for Programming Languages. In: Handbook of Computer Science and Engineering, pp. 2190–2207. CRC Press, Boca Raton (1997)Google Scholar
  27. [Pri95]
    Priami, C.: Stochastic π-Calculus. The Computer Journal 38(6), 578–589 (1995); Proceedings of PAPM 1995Google Scholar
  28. [PRSS01]
    Priami, C., Regev, A., Shapiro, E.Y., Silverman, W.: Application of a Stochastic Name-Passing Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters 80(1), 25–31 (2001)CrossRefMathSciNetMATHGoogle Scholar
  29. [PS96]
    Pierce, B.C., Sangiorgi, D.: Typing and Subtyping for Mobile Processes. Mathematical Structures in Computer Science 6(5), 409–454 (1996); In: Proceedings of LICS 1993, pp. 376–385 (1993) (extract appeared)Google Scholar
  30. [PW05]
    Weske, M., Puhlmann, F.: Using the π-Calculus for Formalizing Workflow Patterns. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS, vol. 3649, pp. 153–168. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  31. [RH98]
    Riely, J., Hennessy, M.: A Typed Language for Distributed Mobile Processes. In: Proceedings of POPL 1998. ACM Press, New York (1998)Google Scholar
  32. [San01]
    Sangiorgi, D.: Asynchronous process calculi: the first-order and higher-order paradigms (Tutorial). Theoretical Computer Science 253(2), 311–350 (2001)CrossRefMathSciNetMATHGoogle Scholar
  33. [Sew00]
    Sewell, P.: Applied Pi — A Brief Tutorial. Technical Report 498, Computer Laboratory, University of Cambridge (2000)Google Scholar
  34. [SW01]
    Sangiorgi, D., Walker, D.: The π-calculus: a Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)Google Scholar
  35. [Uny01]
    Unyapoth, A.: Nomadic Pi Calculi: Expressing and Verifying Infrastructure for Mobile Computation. PhD thesis, University of Cambridge (June 2001)Google Scholar
  36. [Vas94]
    Vasconcelos, V.T.: Typed Concurrent Objects. In: Tokoro, M., Pareschi, R. (eds.) ECOOP 1994. LNCS, vol. 821, pp. 100–117. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  37. [WS00]
    Wojciechowski, P., Sewell, P.: Nomadic Pict: Language and Infrastructure Design for Mobile Agents. IEEE Concurrency 8(2), 42–52 (2000)CrossRefGoogle Scholar
  38. [Yos02]
    Yoshida, N.: Minimality and separation results on asynchronous mobile processes — Representability theorems by concurrent combinators. Theoretical Computer Science 274(1–2), 231–276 (2002)CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Uwe Nestmann
    • 1
  1. 1.Technical University of BerlinGermany

Personalised recommendations