On Finite Alphabets and Infinite Bases III: Simulation

  • Taolue Chen
  • Wan Fokkink
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4137)


This paper studies the (in)equational theory of simulation preorder and equivalence over the process algebra BCCSP. We prove that in the presence of a finite alphabet with at least two actions, the (in)equational theory of BCCSP modulo simulation preorder or equivalence does not have a finite basis. In contrast, in the presence of an alphabet that is infinite or a singleton, the equational theory for simulation equivalence does have a finite basis.


Equational Theory Label Transition System Process Algebra Finite Alphabet Finite Basis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aceto, L., Fokkink, W., van Glabbeek, R., Ingolfsdottir, A.: Nested semantics over finite trees are equationally hard. Information and Computation 191(2), 203–232 (2004)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: Finite Equational Bases in Process Algebra: Results and Open Questions. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 338–367. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Aceto, L., Fokkink, W., Ingolfsdottir, A., Luttik, B.: A Finite Equational Base for CCS with Left Merge and Communication Merge. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 492–503. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Blom, S., Fokkink, W., Nain, S.: On the axiomatizability of ready traces, ready simulation and failure traces. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 109–118. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Chen, T., Fokkink, W., Nain, S.: On Finite Alphabets and Infinite Bases II: Completed and Ready Simulation. In: Aceto, L., Ingólfsdóttir, A. (eds.) FOSSACS 2006. LNCS, vol. 3921, pp. 1–15. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Fokkink, W., Luttik, B.: An ω-Complete Equational Specification of Interleaving. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 729–743. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Fokkink, W., Nain, S.: On finite alphabets and infinite bases: From ready pairs to possible worlds. In: Walukiewicz, I. (ed.) FOSSACS 2004. LNCS, vol. 2987, pp. 182–194. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Fokkink, W.J., Nain, S.: A Finite Basis for Failure Semantics. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 755–765. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    van Glabbeek, R.: The linear time – branching time spectrum I. The semantics of concrete, sequential processes. In: Bergstra, J.A., Ponse, A., Smolka, S.A. (eds.) Handbook of Process Algebra, pp. 3–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  10. 10.
    Groote, J.F.: A new strategy for proving ω-completeness with applications in process algebra. In: Baeten, J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 314–331. Springer, Heidelberg (1990)Google Scholar
  11. 11.
    Gurevic̆, R.: Equational theory of positive natural numbers with exponentiation is not finitely axiomatizable. Annals of Pure and Applied Logic 49, 1–30 (1990)Google Scholar
  12. 12.
    Heering, J.: Partial evaluation and ω-completeness of algebraic specifications. Theoretical Computer Science 43, 149–167 (1986)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Henkin, L.: The logic of equality. American Mathematical Monthly 84(8), 597–612 (1977)CrossRefMathSciNetzbMATHGoogle Scholar
  14. 14.
    Jancar, P., Kucera, A., Moller, F.: Simulation and Bisimulation over One-Counter Processes. In: Reichel, H., Tison, S. (eds.) STACS 2000. LNCS, vol. 1770, pp. 279–345. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  15. 15.
    Lin, H.: PAM: A process algebra manipulator. Formal Methods in System Design 7(3), 243–259 (1995)CrossRefGoogle Scholar
  16. 16.
    Lazrek, A., Lescanne, P., Thiel, J.-J.: Tools for proving inductive equalities, relative completeness, and ω-completeness. Information and Computation 84(1), 47–70 (1990)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Lynch, N., Tuttle, M.: An introduction to input/output automata. CWI Quarterly 2(3), 219–246 (1989)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Lyndon, R.: Identities in two-valued calculi. Transactions of the American Mathematical Society 71, 457–465 (1951)CrossRefMathSciNetzbMATHGoogle Scholar
  19. 19.
    McKenzie, R.: Tarski’s finite basis problem is undecidable. Journal of Algebra and Computation 6(1), 49–104 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  20. 20.
    McKenzie, R., McNulty, G., Taylor, W.: Algebras, Varieties, Lattices. Wadsworth & Brooks/Cole (1987)Google Scholar
  21. 21.
    Milner, R.: A Calculus of Communication Systems. LNCS, vol. 92. Springer, Heidelberg (1980)Google Scholar
  22. 22.
    Milner, R.: Communication and Concurrency. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  23. 23.
    Moller, F.: Axioms for Concurrency. PhD thesis, University of Edinburgh (1989)Google Scholar
  24. 24.
    Moller, F.: The importance of the left merge operator in process algebras. In: Paterson, M. (ed.) ICALP 1990. LNCS, vol. 443, pp. 752–764. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  25. 25.
    Murskiĭ, V.L.: The existence in the three-valued logic of a closed class with a finite basis having no finite complete system of identities. Doklady Akademii Nauk SSSR 163, 815–818 (1965) (in Russian)Google Scholar
  26. 26.
    Murskiĭ, V.L.: The existence of a finite basis of identities, and other properties of almost all finite algebras In: Problemy Kibernetiki, 30, 43–56 (1975) (in Russian)Google Scholar
  27. 27.
    Park, D.M.R.: Concurrency and automata on infinite sequences. In: Deussen, P. (ed.) GI-TCS 1981. LNCS, vol. 104, pp. 167–183. Springer, Heidelberg (1981)CrossRefGoogle Scholar
  28. 28.
    Plotkin, G.D.: The λ-calculus is ω-incomplete. Journal of Symbolic Logic 39(2), 313–317 (1974)CrossRefMathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Taolue Chen
    • 1
    • 2
  • Wan Fokkink
    • 1
    • 3
  1. 1.Department of Software EngineeringCWIAmsterdamThe Netherlands
  2. 2.State Key Laboratory of Novel Software TechnologyNanjing UniversityNanjing, JiangsuP.R. China
  3. 3.Department of Theoretical Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations