A Complete Axiomatisation of Branching Bisimulation for Probabilistic Systems with an Application in Protocol Verification

  • Suzana Andova
  • Jos C. M. Baeten
  • Tim A. C. Willemse
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4137)


We consider abstraction in probabilistic process algebra. The process algebra can be employed for specifying processes that exhibit both probabilistic and non-deterministic choices in their behaviour. We give a set of axioms that completely axiomatises the branching bisimulation for the strictly alternating probabilistic graph model. In addition, several recursive verification rules are identified, allowing us to remove redundant internal activity.

Using the axioms and the verification rules, we have successfully conducted a verification of the Concurrent Alternating Bit Protocol. This is a simple communication protocol, slightly more ‘sophisticated’ than the well-known Alternating Bit Protocol. As channels are lossy, sending continuous streams of data through the channels is a method to overcome this possible loss of data. This instigates a considerable level of parallelism (parallel activities) and as such requires more complex techniques for proving the protocol correct. Using our process algebra we show that after abstraction of internal activity, the protocol behaves as a buffer.


Probabilistic System Probabilistic Choice Process Algebra Complete Axiomatisation Nondeterministic Choice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andova, S., Baeten, J.C.M., Willemse, T.A.C.: Complete axiomatisation of probabilistic branching bisimulation, CSR (to appear, 2006), preliminary version available at,
  2. 2.
    Andova, S., Willemse, T.A.C.: Branching bisimulation for probabilistic systems: characteristics and decidability. In: Baeten, J.C.M., Corradini, F. (eds.) Theor. Comp. Sci., vol. 356(3), pp. 325–355 (2006); Also appeared as a CSR, University of Twente, TR-CTIT-05-08, 2005Google Scholar
  3. 3.
    Andova, S., Baeten, J.C.M.: Abstraction in Probabilistic Process Algebra. In: Margaria, T., Yi, W. (eds.) TACAS 2001. LNCS, vol. 2031, pp. 204–219. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  4. 4.
    Andova, S., Baeten, J.C.M.: Alternative composition does not imply non-determinism. Bulletin of the European Association for Theoretical Computer Science 76, 125–127 (2002)Google Scholar
  5. 5.
    Andova, S.: Probabilistic process algebra, Ph.D. thesis, Eindhoven University of Technology (2002)Google Scholar
  6. 6.
    Andova, S.: Process Algebra with Probabilistic Choice. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 111–129. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Baeten, J.C.M., Bergstra, J.A., Klop, J.W.: On the consistency of Koomen’s fair abstraction rule. Theor. Comp. Sci. 51, 129–176 (1987)CrossRefMathSciNetMATHGoogle Scholar
  8. 8.
    Baeten, J.C.M., Weijland, W.P.: Process algebra. Cambridge University Press, Cambrodge (1990)Google Scholar
  9. 9.
    Baier, C.: On algorithmic verification methods for probabilistic systems, Habilitation thesis, University of Mannheim (1998)Google Scholar
  10. 10.
    Bandini, E., Segala, R.: Axiomatizations for Probabilistic Bisimulation. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS, vol. 2076, pp. 370–381. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Deng, Y., Palamidessi, C.: Axiomatizations for Probabilistic Finite-State Behaviors. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 110–124. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    van Glabbeek, R.J., Weijland, W.P.: Branching time and abstraction in bisimulation semantics. Journal of ACM 43(3), 555–600 (1996)CrossRefMATHGoogle Scholar
  13. 13.
    Hansson, H.: Time and probability in formal design of distributed systems, Ph.D. thesis, DoCS 91/27, University of Uppsala (1991)Google Scholar
  14. 14.
    Koymans, C.P.J., Mulder, J.C.: A modular approach to protocol verification using process algebra. In: Baeten, J.C.M. (ed.) Applications of Process Algebra. Cambridge Tracts in Theoretical Computer Science, vol. 17, pp. 261–306. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  15. 15.
    Milner, R.: Communication and concurrency. International Series in Computer Science. Prentice-Hall, Englewood Cliffs (1989)MATHGoogle Scholar
  16. 16.
    Philippou, A., Lee, I., Sokolsky, O.: Weak Bisimulation for Probabilistic Systems. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, pp. 334–349. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. Nordic Journal of Computing 2(2), 250–273 (1995)MathSciNetMATHGoogle Scholar
  18. 18.
    Stoelinga, M.: Alea jacta est: Verification of probabilistic, real-time and parametric systems, Ph.D. thesis, Katholieke Universiteit Nijmegen, The Netherlands (2002)Google Scholar
  19. 19.
    van Wamel, J.: Process Algebra with Language Matching. Theor. Comput. Sci. 177(2), 425–458 (1997)CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Suzana Andova
    • 1
  • Jos C. M. Baeten
    • 2
  • Tim A. C. Willemse
    • 3
  1. 1.Department of TelematicsNorwegian University of ScienceTrondheimNorway
  2. 2.Department of Mathematics and Computer ScienceEindhoven University of TechnologyMB EindhovenThe Netherlands
  3. 3.Faculty of Science, Mathematics and Computing ScienceUniversity of NijmegenGL NijmegenThe Netherlands

Personalised recommendations