A Complete Axiomatic Semantics for the CSP Stable-Failures Model

  • Yoshinao Isobe
  • Markus Roggenbach
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4137)


Traditionally, the various semantics of the process algebra Csp are formulated in denotational style. For many Csp models, e.g., the traces model, equivalent semantics have been given in operational style. A Csp semantics in axiomatic style, however, has been considered problematic in the literature.

In this paper we present a sound and complete axiomatic semantics for Csp with unbounded nondeterminism over an alphabet of arbitrary size.

This result is connected in various ways with our tool Csp-Prover: (1) the Csp dialect under discussion is the input language of Csp-Prover; (2) all theorems presented have been verified with Csp-Prover; (3) Csp-Prover implements the given axiom system.


Point Theorem Axiom System Process Algebra Denotational Semantic Trace Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dutertre, B., Schneider, S.: Using a PVS embedding of CSP to verify authentication protocols. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 121–136. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall, Englewood Cliffs (1985)MATHGoogle Scholar
  3. 3.
    Isobe, Y., Roggenbach, M.: Webpage on Csp-Prover, http://staff.aist.go.jp/y-isobe/CSP-Prover/CSP-Prover.html
  4. 4.
    Isobe, Y., Roggenbach, M.: A Generic Theorem Prover of CSP Refinement. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 108–123. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Isobe, Y., Roggenbach, M., Gruner, S.: Extending CSP-Prover by deadlock-analysis: Towards the verification of systolic arrays. In: FOSE 2005. Japanese Lecture Notes Series, vol. 31, pp. 257–266. Kindai-kagaku-sha (2005)Google Scholar
  6. 6.
    F. S. E. Limited. Failures-divergence refinement: FDR2, http://www.fsel.com/
  7. 7.
    Paulson, L.C.: A Generic Theorem Prover. LNCS, vol. 828. Springer, Heidelberg (1994)MATHGoogle Scholar
  8. 8.
    Roscoe, A.W.: The Theory and Practice of Concurrency. Prentice-Hall, Englewood Cliffs (1998), http://web.comlab.ox.ac.uk/oucl/work/bill.roscoe/pubs.html Or No. 68Google Scholar
  9. 9.
    Schneider, S.: Verifying authentication protocol implementations. In: Jacobs, B., Rensink, A. (eds.) FMOODS 2002. IFIP Conference Proceedings, vol. 209, pp. 5–24. Kluwer, Dordrecht (2002)Google Scholar
  10. 10.
    Tej, H., Wolff, B.: A corrected failure-divergence model for CSP in Isabelle/HOL. In: Fitzgerald, J.S., Jones, C.B., Lucas, P. (eds.) FME 1997. LNCS, vol. 1313, pp. 318–337. Springer, Heidelberg (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yoshinao Isobe
    • 1
  • Markus Roggenbach
    • 2
  1. 1.National Institute of Advanced Industrial Science and TechnologyJapan
  2. 2.University of Wales SwanseaUnited Kingdom

Personalised recommendations