Advertisement

The Role of Verb Sense Disambiguation in Semantic Role Labeling

  • Paloma Moreda
  • Manuel Palomar
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4139)

Abstract

In this paper an exhaustive evaluation of the behavior of the most relevant features used in Semantic Role Disambiguation tasks when the senses of the verbs are considered and when they are not, is presented. This evaluation analyzes the influence of Verb Sense Disambiguation in the task. In order to do this, a whole system of Semantic Role Labeling is used and it is compared with similar methods. Our main results show how using the senses of the verbs improves the results for verb-specific roles, such as A2 or A3, and while not using them improves the results for adjuncts, such as modal or negative.

Keywords

Semantic Role Word Sense Disambiguation Tuning Process Name Entity Semantic Role Label 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ninth Conference on Natural Language Learning (CoNLL 2005), Ann Arbor, Michigan, USA (June 2005)Google Scholar
  2. 2.
    Carreras, X., Màrquez, L.: Phrase recognition by filtering and ranking with perceptrons. In: Proceedings of Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria (September 2003)Google Scholar
  3. 3.
    Carreras, X., Màrquez, L.: Introduction to the CoNLL 2005 Shared Task: Semantic Role Labeling. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]Google Scholar
  4. 4.
    Chieu, H.L., Ng, H.T.: Named Entity Recognition With a Maximum Entropy Approach. In: Proceedings of the Seventh Conference on Natural Language Learning (CoNLL), Edmonton, Alberta, Canada (May -June 2003)Google Scholar
  5. 5.
    Daelemans, W., Zavrel, J., van der Sloot, K., van den Bosch, A.: TiMBL: Tilburg Memory Based Learner, version 5.0, Reference Guide. ILK Research Group Technical Report Series 03-10, Tilburg, 56 pages (2003)Google Scholar
  6. 6.
    Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational Linguistics 28(3), 245–288 (2002)CrossRefGoogle Scholar
  7. 7.
    Gildea, D., Palmer, M.: The necessity of parsing for predicate argument recognition. In: Proceedings of the 40th Annual Meeting of the Association for Computational Linguistic (ACL), Philadelphia (July 2002)Google Scholar
  8. 8.
    Giménez, J., Màrquez, L.: Fast and Accurate Part-of-Speech Tagging: The SVM Approach Revisited. In: Proceedings of Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria (September 2003)Google Scholar
  9. 9.
    Hacioglu, K., Pradhan, S., Ward, W., Martin, J.H., Jurafsky, D.: Semantic Role Labeling by Tagging Syntactic Chunks. In: Proceedings of the Eighth Conference on Natural Language Learning (CoNLL 2004), Boston, MA, USA (May 2004)Google Scholar
  10. 10.
    Haghighi, A., Toutanova, K., Manning, C.: A Joint Model for Semantic Role Labeling. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]Google Scholar
  11. 11.
    Langley, P.: Selection of Relevant Features in Machine Learning. In: AAAI Press (ed.) Proceedings of the AAAI Fall Symposium on Relevance (AAAI), New Orleans, LA (1994)Google Scholar
  12. 12.
    Litkowski, K.: Senseval-3 task: Automatic Labeling of Semantic Roles. In: Proceedings of the Third International Workshop on the Evaluation of Systems for the Semantic Analysis of Text, Barcela, Spain, ACL-SIGLEX (July 2004)Google Scholar
  13. 13.
    Marcus, M.P., Santorini, B., Marcinkiewicz, M.A.: Building a Large Annotated Corpus of English: the Penn Treebank. Computational Linguistics 19(2), 313–330 (1993)Google Scholar
  14. 14.
    Moreda, P., Palomar, M.: Selecting Features for Semantic Roles in QA Systems. In: Proceedings of Recent Advances in Natural Language Processing (RANLP), Borovets, Bulgaria (September 2005)Google Scholar
  15. 15.
    Palmer, M., Gildea, D., Kingsbury, P.: The Proposition Bank: An Annotated Corpus of Semantic Roles. Computational Linguistics 31(1), 71–106 (2005)CrossRefGoogle Scholar
  16. 16.
    Pradhan, S., Hacioglu, K., Krugler, V., Ward, W., Martin, J., Jurafsky, D.: Support Vector Learning for Semantic Argument Classification. Machine Learning (2005)Google Scholar
  17. 17.
    Pradhan, S., Hacioglu, K., Ward, W., Martin, J.H., Jurafsky, D.: Semantic role chunking combining complementary syntactic views. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]Google Scholar
  18. 18.
    Punyakanok, V., Roth, D., Yih, W., Zimak, D.: Generalized inference with multiple semantic role labeling systems. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]Google Scholar
  19. 19.
    Punyakanok, V., Roth, D., Yih, W., Zimak, D., Tu, Y.: Semantic Role Labeling Via Generalized Inference Over Classifiers. In: Proceedings of the 20th International Conference on Computational Linguistics (COLING), Switzerland (August 2004)Google Scholar
  20. 20.
    Tjong Kim Sang, E.F., Canisius, S., van den Bosch, A., Bogers, T.: Applying spelling error correction techniques for improving semantic role labeling. In: Proceedings of the Ninth Conference on Natural Language Learning (CoNLL 2005) [1]Google Scholar
  21. 21.
    Suárez, A., Palomar, M.: A Maximum Entropy-based Word Sense Disambiguation System. In: Proceedings of the 19th International Conference on Computational Linguistics (COLING), Taipei, Taiwan, pp. 960–966 (August 2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Paloma Moreda
    • 1
  • Manuel Palomar
    • 1
  1. 1.Natural Language Processing Research GroupUniversity of AlicanteAlicanteSpain

Personalised recommendations