Advertisement

Language Model Mixtures for Contextual Ad Placement in Personal Blogs

  • Gilad Mishne
  • Maarten de Rijke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4139)

Abstract

We introduce a method for content-based advertisement selection for personal blog pages, based on combining multiple representations of the blog. The core idea behind the method is that personal blogs represent individuals, whose interests can be modeled by the language used in the blog itself combined with the language used in related sources of information, such as comments posted to a blog post or the blogger’s community. An evaluation of our ad placement method shows improvement over state-of-the-art ad placement methods which were not designed for blog pages.

Keywords

Language Model Machine Translation Pointwise Mutual Information Impedance Coupling Trigger Word 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Herring, S., Scheidt, L., Bonus, S., Wright, E.: Bridging the gap: A genre analysis of weblogs. In: HICSS (2004)Google Scholar
  2. 2.
    TREC: Blog track (2006), URL: http://trec.nist.gov
  3. 3.
    Gruhl, D., Guha, R., Kumar, R., Novak, J., Tomkins, A.: The predictive power of online chatter. In: Proceedings KDD 2005 (2005)Google Scholar
  4. 4.
    Mishne, G., de Rijke, M.: Deriving wishlists from blogs: Show us your blog, and we’ll tell you what books to buy. In: Proceedings WWW 2006 (2006)Google Scholar
  5. 5.
    Lingamneni, S.: Predicting the future of internet advertising (2004), http://www.stanford.edu/group/boothe/0405/PWR-Lingamneni.pdf
  6. 6.
    Wang, C., Zhang, P., Choi, R., Daeredita, M.: Understanding consumers attitude toward advertising. In: Eighth Americas Conference on Information Systems, pp. 1143–1148 (2002)Google Scholar
  7. 7.
    Bhargava, H.K., Feng, J.: Paid placement strategies for internet search engines. In: Proceedings WWW 2002 (2002)Google Scholar
  8. 8.
    Novak, T.P., Hoffman, D.L.: New metrics for new media: toward the development of web measurement standards. World Wide Web J. 2, 213–246 (1997)Google Scholar
  9. 9.
    Ribeiro-Neto, B., Cristo, M., Golgher, P., de Moura, E.S.: Impedance coupling in content-targeted advertising. In: Proceedings SIGIR 2005 (2005)Google Scholar
  10. 10.
    Langheinrich, M., Nakamura, A., Abe, N., Kamba, T., Koseki, Y.: Unintrusive customization techniques for web advertising. Comput. Networks 31 (1999)Google Scholar
  11. 11.
    Tau-Wih, W., Goodman, J., Carvalho, V.: Finding advertising keywords on web pages. In: Proceedings WWW 2006, Edinburgh, Scotland (2006)Google Scholar
  12. 12.
    Rosenfeld, R.: Two decades of statistical language modeling: Where do we go from here? Proceedings of the IEEE 88 (2000)Google Scholar
  13. 13.
    Ponte, J., Croft, W.: A language modeling approach to information retrieval. In: Proceedings SIGIR 1998 (1998)Google Scholar
  14. 14.
    Brown, R., Frederking, R.: Applying statistical english language modeling to symbolic machine translation. In: Proceedings TMI 1995 (1995)Google Scholar
  15. 15.
    Dunning, T.: Accurate methods for the statistics of surprise and coincidence. Computational Linguistics 19 (1993)Google Scholar
  16. 16.
    Winer, D.: What makes a weblog a weblog? (2003) (accessed April 2006), blogs.law.harvard.edu/whatMakesAWeblogAWeblog
  17. 17.
    Gumbrecht, M.: Blogs as protected space. In: WWW 2004 Workshop on the Weblogging Ecosystem: Aggregation, Analysis and Dynamics (2004)Google Scholar
  18. 18.
    Golder, S., Huberman, B.: The structure of collaborative tagging systems. J. of Information Science (2006)Google Scholar
  19. 19.
    Kumar, R., Novak, J., Raghavan, P., Tomkins, A.: On the bursty evolution of blogspace. In: Proceedings WWW 2003 (2003)Google Scholar
  20. 20.
    Hiemstra, D.: Using Language Models for Information Retrieval. PhD thesis, Enschede (2001)Google Scholar
  21. 21.
    Lavrenko, V.: Optimal Mixture Models in IR. In: Crestani, F., Girolami, M., van Rijsbergen, C.J.K. (eds.) ECIR 2002. LNCS, vol. 2291, pp. 193–212. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  22. 22.
    Kalai, A., Chen, S., Blum, A., Rosenfeld, R.: On-line algorithms for combining language models. In: Proceedings ICASSP 1999 (1999)Google Scholar
  23. 23.
    Turney, P.D.: Mining the web for synonyms: PMI-IR versus LSA on TOEFL. In: Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS, vol. 2167, pp. 491–502. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  24. 24.
    Hollink, V., Kamps, J., Monz, C., de Rijke, M.: Monolingual document retrieval for European languages. Information Retrieval 7 (2004)Google Scholar
  25. 25.
    Mishne, G., Glance, N.: Predicting movie sales from blogger sentiment. In: AAAI Spring Symposium on Computational Approaches to Analysing Weblogs (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gilad Mishne
    • 1
  • Maarten de Rijke
    • 1
  1. 1.ISLAUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations