GFHM Model and Control for Uncertain Chaotic System

  • Dongsheng Yang
  • Huaguang Zhang
  • Zhiliang Wang
  • Yingchun Wang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4114)


This paper develops a fuzzy hyperbolic control method for chaotic continuous-time systems with uncertainties. First, the generalized fuzzy hyperbolic model (GFHM) is used to model unknown part of a chaotic system. Second, based on Lyapunov functional approach, a sufficient condition for a fuzzy hyperbolic controller and a state feedback controller is given such that the closed-loop system is asymptotic stable. Moreover, considering the influence of both approximation error and external disturbance, fuzzy hyperbolic H  ∞  control scheme is addressed . All the results are given in terms of LMI forms, the effectiveness of the proposed method is shown by a simulation example.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chen, G., Fan, J.-Q., Hong, Y., Qin, H.S.: Introduction to chaos control and anti-control. In: Leung, T.P., Qin, H.-S. (eds.) Advanced Topics in Nonlinear Control Systems, ch. 6, pp. 193–245. World scientific, Singapore (2001)CrossRefGoogle Scholar
  2. 2.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Sanchez, E.N., Perez, J.P., Martinez, M., Chen, G.: Chaos stablilization: An inverse optimal control approach. Latin Amer. Appl. Res.: Int. J. 32, 111–114 (2002)Google Scholar
  4. 4.
    Redev, R.: Control of non-linear system, described by Loren’z model. J. Automatica and Informatics XXXIV, 29–32 (2000)Google Scholar
  5. 5.
    Chen, G., Lai, D.: Making a dynamical system chaotic: Feedback control of Lyapunov exponents for discrete-time dynamical systems. IEEE Trans. Circuits Syst.-I: Fund. Th. Appl. 44, 250–253 (1997)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Chen, G., Lai, D.: Feedback anticontrol of discrete chaos. Int. J. Bifurcation and Chaos 8, 1585–1590 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chen, L., Chen, G.: Fuzzy predictive control of uncertain chaotic systems using time series. Int. J. Bifurcation and Chaos 9, 757–767 (1999)zbMATHCrossRefGoogle Scholar
  8. 8.
    Kim, J.-H., Park, C.-W.W., Kim, E., Park, M.: Fuzzy adaptive synchronization of uncertain chaotic systems. Physics Letters A 334, 295–305 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Zhang, H.G., Quan, Y.B.: Modelling, Identification and Control of a Class of Non-linear System. IEEE Trans. on Fuzzy Systems 9(2), 349–354 (2001)CrossRefGoogle Scholar
  10. 10.
    Zhang, H.G., Wang, Z.L., Li, M., et al.: Generalized Fuzzy Hyperbolic Model: A Universal Approximator. Acta Automatic Asinica 30(3), 416–422 (2004)MathSciNetGoogle Scholar
  11. 11.
    Zhang, H.G., Wang, Z.L., Liu, D.R.: Chaotifying Fuzzy Hyperbolic Model Based On Adaptive Inverse Optimal Control Approach. Int. J. Bifurcation And Chaos 12, 32–43 (2003)Google Scholar
  12. 12.
    Corless, M.: Guaranteed Rates of Exponential Convergence for Uncertain Systems. Journal of Optimization and Application 64(3), 481–494 (1990)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Ordones, R., Passino, K.M.: Stable Multi-Output Adaptive Fuzzy/neural Control. IEEE Trans. on Fuzzy Systems 7, 345–353 (1999)CrossRefGoogle Scholar
  14. 14.
    Lun, S., Zhang, H., Liu, D.: Fuzzy Hyperbolic H∞ Filter Design for a Class of Nonlinear Continuous-time Dynamic Systems. In: Proc. of the 43th IEEE Int. Conf. on Decision and Control, Atlantis, Paradise Island, Bahamas, pp. 225–230 (2004)Google Scholar
  15. 15.
    Margaliot, M., Langholz, G.: Hyperbolic Optimal Control and Fuzzy Control. IEEE Transactions on Systems, Man, and Cybernetics 29, 1–9 (1999)Google Scholar
  16. 16.
    Boyd, S., Ghaoui, L.E., Feron, E., Balakrishan, V.: Linear Matrix Inequalities in System and Control Theory. SIAM, Philadelphia (1994)zbMATHGoogle Scholar
  17. 17.
    Fotsin, H.B., Woafo, P.: Adaptive Synchronization of a Modified and Uncertain Chaotic Van der Pol-Duffing Oscillator Based on Parameter Identification Chaos. Solitons and Fractals 24, 1363–1371 (2005)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dongsheng Yang
    • 1
  • Huaguang Zhang
    • 1
  • Zhiliang Wang
    • 1
  • Yingchun Wang
    • 1
  1. 1.School of Information Science and EngineeringNortheastern UniversityShenyangP.R. China

Personalised recommendations