A Global Optimization Method Based on Simulated Annealing and Evolutionary Strategy

  • DarYun Chiang
  • JauSung Moh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4113)


A global optimization method is proposed to improve the conventional method of simulated annealing. By introducing the probability distribution function for the objective function and the concept of stable energy for detecting thermal equilibrium during annealing, the selection of initial temperature and equilibrium criterion becomes easy and effective. Furthermore, the efficiency and robustness of the proposed method is retained by employing the technique of region reduction and an adaptive neighborhood structure. In the case where multiple (global) optima may exist, a technique based on the method of simulated evolution is developed to circumvent the difficulty of convergence of population. Numerical studies of some standard test functions and an optimum structural design problem show that the proposed method is effective in solving global optimization problems.


Simulated Annealing Global Optimization Probability Distribution Function Global Optimization Method AIAA Journal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brooks, K.H.: A Discussion of Random Methods of Seeking Optima. Operations Research 6, 244–251 (1958)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Solis, F.J., Wets, R.J.B.: Minimization by Random Search Techniques. Mathematics of Operations Research 6, 19–30 (1981)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fabio, S.: Stochastic Techniques for Global Optimization: A survey of Recent Advances. Journal of Global Optimization 1, 207–228 (1991)MATHCrossRefGoogle Scholar
  4. 4.
    Goldberg, D.E.: Genetic Algorithms in Search. Optimization and Machine Learning. Addison-Wesley Reading, MA (1989)Google Scholar
  5. 5.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through Simulated Evolution. Wiley Publishing, New York (1966)MATHGoogle Scholar
  6. 6.
    Aarts, E., Korst, J.: Simulated Annealing and Boltzmann Machines. J. Wiley & Sons, Chichester (1989)MATHGoogle Scholar
  7. 7.
    Jenkins, W.M.: Towards Structural Optimization Via the Genetic Algorithm. Computer & Structures 40, 1321–1327 (1991)MATHCrossRefGoogle Scholar
  8. 8.
    Riche, R.L., Haftka, R.T.: Optimization of Laminate Stacking Sequence for Buckling Load Maximization by Genetic Algorithm. AIAA Journal 31, 951–956 (1993)MATHCrossRefGoogle Scholar
  9. 9.
    Junjiro, O., Yoji, H.: Actuator Placement Optimization by Genetic and Improved Simulated Annealing Algorithms. AIAA Journal 31, 1167–1169 (1992)Google Scholar
  10. 10.
    Atiqullah, M.M., Rao, S.S.: Parallel Processing in Optimal Structural Design Using Simulated Annealing. AIAA Journal 33, 2386–2392 (1995)MATHCrossRefGoogle Scholar
  11. 11.
    Srichander, R.: Efficient Schedules for Simulated Annealing. Engineering Optimization 24, 161–176 (1995)CrossRefGoogle Scholar
  12. 12.
    Jaynes, E.T.: Information Theory and Statistical Mechanics. Physical Reviews 106, 620–630 (1957)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Chiang, D.Y., Huang, S.T.: Modal Parameter Identification Using Simulated Evolution. AIAA Journal 35, 1204–1208 (1997)MATHCrossRefGoogle Scholar
  15. 15.
    Lucidi, S., Piccioni, M.: Random Tunneling by Means of Acceptance-Rejection Sampling for Global Optimization. Journal of Optimization Theory & Applications 62, 255–277 (1989)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kirsch, U.: Optimum Structural Design, ch. 6. McGraw-Hill, New York (1981)Google Scholar
  17. 17.
    Hajela, P., Yoo, J.: Constraint Handling in Genetic Search Using Expression Strategies. AIAA Journal 34, 2414–2420 (1996)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • DarYun Chiang
    • 1
  • JauSung Moh
    • 1
  1. 1.Department of Aeronautics and AstronauticsNational Cheng Kung UniversityTainanTaiwan, Republic of China

Personalised recommendations