Chaotic Synchronization of Hindmarsh-Rose Neural Networks Using Special Feedback Function

  • HongJie Yu
  • JianHua Peng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4113)


The chaotic synchronizations of Hindmarsh-Rose (HR) neurons networks linked using the nonlinear coupling feedback functions constructed specially are discussed. The method is an expansion of SC method based on the stability criterion. The stable chaotic synchronization can be achieved without calculation of the maximum Lyapunov exponent when the coupling strength is taken as reference value. The efficiency and robustness of this approach are verified theoretically and numerically. We find that the phenomenon of the phase synchronization occurs in a certain region of coupling strength in the case of networks with three neurons. It is shown that with increasing of the number of the coupled neurons, the coupling strength satisfying stability equation of synchronization decreases in the case of all-to-all coupling. Besides, the influences of noise to synchronization of two coupling neurons are given.


Lyapunov Exponent Coupling Strength Phase Synchronization Synchronization Error Nonlinear Coupling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Pecora, L.M., Carroll, T.: Synchronization in Chaotic System. Phys. Rev. Lett. 64, 821–824 (1990)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ott, E., Grebogi, C., Yorke, J.A.: Controlling Chaos. Phys. Rev. Lett. 64, 1196–1199 (1990)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Pecora, L.M., Carroll, T.L.: Master Stability Functions for Synchronized Coupled Systems. Phys. Rev. Lett. 80, 2109–2112 (1998)CrossRefGoogle Scholar
  4. 4.
    Ali, M.K., Fang, J.Q.: Synchronization of Chaos and Hyperchaos Using Linear and Nonlinear Feedback Functions. Phys. Rev. E. 55, 5285–5290 (1997)CrossRefGoogle Scholar
  5. 5.
    Yu, H.J., Liu, Y.Z., Peng, J.H.: Control Of Chaotic Neural Networks Based On Contraction Mappings. Chaos, Solitons and Fractals 22, 787–792 (2004)MATHCrossRefGoogle Scholar
  6. 6.
    Yu, H.J., Liu, Y.Z.: Chaotic Synchronization Based on Stability Criterion. Phys. Lett. A. 314, 292–298 (2003)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hrshu, J.F., Carroll, T.L., Pecora, L.M.: Sychronous Chaos in Coupled Oscillator Systems. Phys. Rev. E. 50, 1874–1885 (1994)CrossRefGoogle Scholar
  8. 8.
    Gauthier, D.J., Bienfang, J.C.: Intermittent Loss of Synchronization in Coupled Chaotic Oscillators: Toward a New Criterion for High-Quality Synchronization. Phys. Rev. Lett. 77, 1751–1754 (1996)CrossRefGoogle Scholar
  9. 9.
    Wang, W., Perez, G., Cerdeira, H.A.: Dynamical Behavior Of The Firings In A Coupled Neuronal System. Phys. Rev. E. 47, 2893–2898 (1993)CrossRefGoogle Scholar
  10. 10.
    Shuai, J.W., Durand, D.M.: Phase Synchronization in Two Coupled Chaotic Neurons. Phys. Lett. A 264, 289–297 (1999)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Schäfer, C., Rosenblum, M.G.: Synchronization in the Human Cardiorespiratory System. Phys. Rev. E. 60, 857–870 (1999)CrossRefGoogle Scholar
  12. 12.
    Sabbagh, H.: Control of chaotic solutions of the Hindmarsh-Rose Equations. Chaos, Solitons and Fractals 11, 1213–1218 (2000)MATHCrossRefGoogle Scholar
  13. 13.
    Crook, N., Scheper, T., Pathirana, V.: Self-Organised Dynamic Recognition States for Chaotic Neural Networks. Information Sciences 150, 59–75 (2003)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Dhamala, M., Jirsa, V.K., Ding, M.: Enhancement of Neural Synchrony By Time Delay. Phys. Rev. Lett. 92, 74104 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • HongJie Yu
    • 1
  • JianHua Peng
    • 2
  1. 1.Department of Engineering MechanicsShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Institute for Brain Information Processing and Cognitive Neurodynamics, School of Information Science and EngineeringEast China University of Science and TechnologyShanghaiChina

Personalised recommendations