Optical Sensing, Logic and Computations in Brillouin-Active Fiber Based Neural Network in Smart Structures

  • Yong-Kab Kim
  • Do Geun Huh
  • Kwan-Woong Kim
  • ChangKug Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4113)


Nonlinear fiber optics, in the form of stimulated Brillouin scattering (sBs), has now emerged as the essential means for the construction of active optical devices used for all-optic in-line switching, channel selection, amplification, oscillation in optical communications, optical logic elements in optical computation and sensing, and a host of other applications. The controlling of sBs in optical system based smart structures leads to neural networks with multistable periodic states; create optical logic 1 or 0. It can be used for optical logic and computations and optical sensing. It is theoretically possible also to apply the multi-stability regimes as an optical memory device for encoding and decoding series and complex data transmission in optical communications systems.


Pump Power Hardware Implementation Stimulate Brillouin Scattering Channel Selection Smart Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grossman, B., Alavie, T., Ham, F., Franke, F., Thursby, M.: Fiber-Optic Sensor and Smart Structures Research at Florida Institute of Technology. SPIE 1170, 213–218 (1989)Google Scholar
  2. 2.
    Koyamada, Y., Sato, S., Nakamura, S., Sotobayashi, H., Chujo, W.: Simulating and Designing Brillouin Gain Spectrum in Single-Mode Fibers. J. of Lightwave Tech. 22(2), 631–639 (2004)CrossRefGoogle Scholar
  3. 3.
    Bernini, R., Minardo, A., Zeni, L.: Stimulated Brillouin Scattering Frequency-Domain Analysis in A Single-Mode Optical Fiber for Distributed Sensing. Optics Letters 29(17), 1977–1979 (2004)CrossRefGoogle Scholar
  4. 4.
    Tanemura, T., Takyshima, Y., Kikuchi, K.: Narrowband Optical Filter, with A Variable Transmission Spectrum. Using Stimulated Brillouin Scattering in Optical Fiber. Opt. Lett. 27(17), 1552–1554 (2002)Google Scholar
  5. 5.
    Cotter, D.: Stimulated Brillouin Scattering in Monomode Optical Fiber. J. Opt. Com. 4, 10–19 (1983)CrossRefGoogle Scholar
  6. 6.
    Agrawal, G.P.: Nonlinear Fiber Optics, 3rd edn. Academic press, London (2001)Google Scholar
  7. 7.
    Kim, Y.K., Lim, S., Kim, H., Oh, S., Chung, Y.: Implementation of Brillouin-Active Fiber Based Neural Network in Smart Structures. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 987–991. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Kim, Y.K., Kim, J., Lim, S., Kim, D.: Neuron Operation Using Controlled Chaotic Instabilities in Brillouin-Active Fiber Based Neural Network. In: Wang, L., Chen, K., S. Ong, Y. (eds.) ICNC 2005. LNCS, vol. 3612, pp. 1045–1051. Springer, Heidelberg (2005)Google Scholar
  9. 9.
    Tariq, S., Habib, M.K.: Neural Operation Using Stimulated Brillouin Scattering in Optical Fiber. Opt. Eng. 37, 1823–1826 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yong-Kab Kim
    • 1
  • Do Geun Huh
    • 1
  • Kwan-Woong Kim
    • 1
  • ChangKug Kim
    • 2
  1. 1.School of Electrical Electronics & Information EngineeringWonKwang UniversityChon-BukKorea
  2. 2.Bioinformatics DivNational Institute of Agricultural BiotechnologySuwonKorea

Personalised recommendations