Advertisement

Global Exponential Stability of T-S Fuzzy Neural Networks with Time-Varying Delays

  • Chaojin Fu
  • Zhongsheng Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4113)

Abstract

This paper investigates the global exponential stability of Takagi-Sugeno Fuzzy cellular neural networks with time-varying delays. Using the reduction to absurdity, a less conservative delay-independent stability criterion is derived to guarantee the exponential stability of Takagi-Sugeno Fuzzy cellular neural networks with time-varying delays. Since our model is more general than some existing works, the results presented in this paper are the improvement and extension of the existed ones.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chua, L.O., Yang, L.: Cellular Neural Networks: Theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Chua, L.O., Yang, L.: Cellular Neural Networks: Applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Roska, T., Wu, C.W., Balsi, M., Chua, L.O.: Stability and Dynamics of Delay-type General and Cellular Neural Networks. IEEE Trans. Circuits Syst. I 39, 487–490 (1992)zbMATHCrossRefGoogle Scholar
  4. 4.
    Roska, T., Wu, C.W., Chua, L.O.: Stability of Cellular Neural Networks with Dominant Nonlinear and Delay-type Templates. IEEE Trans. Circuits Syst. I 40, 270–272 (1993)zbMATHCrossRefGoogle Scholar
  5. 5.
    Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Trans. Syst., Man, Cybern. SMC 15, 116–132 (1985)zbMATHGoogle Scholar
  6. 6.
    Yamamoto, H., Furuhashi, T.: A New Sufficient Condition for Stable Fuzzy Control System and Its Design Method. IEEE Trans. Fuzzy Syst. 9, 554–569 (2001)CrossRefGoogle Scholar
  7. 7.
    Huang, H., Ho, D.W.C., Lam, J.: Stochastic Stability Analysis of Fuzzy Hopfield Neural Networks with Time-varying Delays. IEEE Trans. Circuit Syst. 52, 251–255 (2005)Google Scholar
  8. 8.
    Bernard, J.F.: Use of Rule-based System for Process Control. IEEE Contr. System Mag. 8, 3–13 (1988)CrossRefGoogle Scholar
  9. 9.
    Polycarpou, M.M., Ioannou, P.A.: Learning and Convergence Analysis of Neural-type Structured Networks. IEEE Trans. on Neural Networks 3, 39–50 (1992)CrossRefGoogle Scholar
  10. 10.
    Forti, M., Tesi, A.: New Conditions for Global Stability of Neural Networks with Application to Linear and Quadratic Programming Problems. IEEE Trans. Circ. Syst. I 42, 354–366 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Liao, X.X., Wang, J.: Algebraic Criteria for Global Exponential Stability of Cellular Neural Networks with Multiple Time Delays. IEEE Trans. Circuits and Systems I. 50, 268–275 (2003)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Zeng, Z.G., Wang, J.: Complete Stability of Cellular Neural Networks with Time-varying Delays. IEEE Trans. on Circuits and Systems-I: Regular Papers 53, 944–955 (2006)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Zeng, Z.G., Wang, J.: Multiperiodicity and Exponential Attractivity Evoked by Periodic External Inputs in Delayed Cellular Neural Networks. Neural Computation 18, 848–870 (2006)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Zeng, Z.G., Huang, D.S., Wang, Z.F.: Global Stability of a General Class of Discrete-time Recurrent Neural Networks. Neural Processing Letters 22, 33–47 (2005)CrossRefGoogle Scholar
  15. 15.
    Zeng, Z.G., Wang, J., Liao, X.X.: Global Asymptotic Stability and Global Exponential Stability of Neural Networks with Unbounded Time-varying Delays. IEEE Trans. on Circuits and Systems II, Express Briefs 52, 168–173 (2005)CrossRefGoogle Scholar
  16. 16.
    Kumar, S.R., Majumder, D.D.: Application of FCSs to Industrial Processes. Automatica 13, 235–242 (1997)Google Scholar
  17. 17.
    Tanaka, K., Sugeno, M.: Stability Analysis and Design of Fuzzy Control Systems. Fuzzy Sets and Systems 45, 135–156 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kiszka, J.B., Gupta, M.M., Nikiforuk, P.N.: Energetistic Stability of Fuzzy Dynamic Systems. IEEE Trans. Systems, Man Cybern. 15, 783–791 (1985)zbMATHGoogle Scholar
  19. 19.
    Yang, T., Yang, L.B.: The Global Stability of Fuzzy Cellular Neural Network. IEEE Trans. Circuits Syst. Part I 43, 880–883 (1996)CrossRefGoogle Scholar
  20. 20.
    Fu, C.J., Liao, W.D.: Global Exponential Stability of Fuzzy Neural Networks. In: Proceedings of the 2004 International Conference on Information Acquisition, pp. 32–35 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chaojin Fu
    • 1
    • 2
  • Zhongsheng Wang
    • 3
  1. 1.Department of MathematicsHubei Normal UniversityHuangshiChina
  2. 2.Hubei province Key Laboratory of Bioanalytical TechniqueHubei Normal University 
  3. 3.Department of Electric EngineeringZhongYuan Institute of TechnologyZhengzhouChina

Personalised recommendations