Multi-modal Feature Integration for Secure Authentication

  • Hang-Bong Kang
  • Myung-Ho Ju
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4113)


In this paper, we propose a new multi-modal feature integration for secure authentication. We introduce behavioral information as well as biometrics information for the person of interest to test his verification. For continuous authentication, temporal score integration method is presented that incorporates biometrics and behavioral features. The proposed method was evaluated under several real situations and promising results were obtained.


Behavioral Feature Temporal Integration Dynamic Bayesian Network Biometric System Biometric Feature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ross, A., Jain, A.: Multimodal Biometrics: An Overview. In: Proc. EUSIPCO (2004)Google Scholar
  2. 2.
    Sanderson, C., Paliwal, K.: Information Fusion and Person Verification Using Speech and Face Information, IDIAP Research Report, IDIAP-RR 02-33, IDIAP (2002)Google Scholar
  3. 3.
    Ross, A., Jain, A.: Multimodal Biometrics: An Overview. In: Proc. EUSIPCO (2004)Google Scholar
  4. 4.
    Altinok, A., Turk, M.: Temporal Integration for Continuous Multimodal Biometrics. In: Proc. Multi-modal user Authentication (2003)Google Scholar
  5. 5.
    Martinez, A., Kak, A.: PCA Versus LDA. IEEE Tans. PAMI 23(2) (2001)Google Scholar
  6. 6.
    Marcialis, G., Roli, F.: Fusion of LDA and PCA for Face Verification. In: Windeatt, T., Roli, F. (eds.) MCS 2003. LNCS, vol. 2709. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Kang, H.–B., Cho, S.: Multi-modal Face Tracking in Multi-Camera Environments. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 814–821. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Nishihara, H., Thomas, H., Huber, E.: Real-time Tracking of People Using Stereo and Motion. In: Proc. SPIE, vol. 2183, pp. 266–273 (1994)Google Scholar
  9. 9.
    Nummiaro, K., Koller-Meier, E., Van Gool, L.: A Color-Based Particle Filter. In: First International Workshop on Generative-Model-Based Vision, pp. 53–60 (2002)Google Scholar
  10. 10.
    Du, C., Su, G.: Face Pose Estimation based on Eigenspace Analysis and Fuzzy Clustering. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 411–417. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hang-Bong Kang
    • 1
  • Myung-Ho Ju
    • 1
  1. 1.Dept. of Computer Eng.Catholic Univ. of KoreaPuchon City, Kyonggi-DoKorea

Personalised recommendations