Object Detection Using Context-Based Cascade Classifier

  • Mi Young Nam
  • Phill Kyu Rhee
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4113)


The face images are varying environment database from external illumination. Therefore we propose parallel cascade face detector. We define context image illumination and distinguish context using unsupervised learning. Many unsupervised method is available to distinguish varying illuminant images. This approach can be distribution face image and we can make the classifier for face image context. Therefore, in this paper, we parallel classifier that is strutted cascade classifier of two methods. In first classifier, we use sub-sampling feature extraction and in second classifier we use wavelet transformation method. We achieved very encouraging experimental results. Our method is enhancement varying illumination environment.


Face Image Object Detection Face Detection Haar Wavelet Bayesian Classifier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yang, M.-H., Ahuja, N., Kriegman, D.: Mixtures of Linear Subspaces for Face Detection. In: Proc. Fourth Int’l Conf. Automatic Face and Gesture Recognition, pp. 70–76 (2000)Google Scholar
  2. 2.
    Yang, M.-H., Roth, D., Ahuja, N.: A SNoW-Based Face Detector. In: Solla, S.A., Leen, T.K., Muller, K.-R. (eds.) Advances in Neural Information Processing Systems 12, pp. 855–861. MIT Press, Cambridge (2000)Google Scholar
  3. 3.
    Low, B.K., Hjelmas, E.: Face Detection A Survey. Computer Vision and Image Understanding 83(3), 236–274 (2001)MATHCrossRefGoogle Scholar
  4. 4.
    Pham, T.V., et al.: Face detection by aggregated Bayesian network classifiers. Pattern Recognition Letters 23, 451–461 (2002)MATHCrossRefGoogle Scholar
  5. 5.
    Li, S.Z., Zhenqiu, Z.: FloatBoost learning and statistical face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 1112–1123 (2004)CrossRefGoogle Scholar
  6. 6.
    Liu, C.: Bayesian Discriminating Features Method for Face Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 25(6), 725–740 (2003)CrossRefGoogle Scholar
  7. 7.
    Schneiderman, H., Kanade, T.: Object Detection Using the Statistics of Parts. Int’l J. Computer Vision 56(3), 151–177 (2004)CrossRefGoogle Scholar
  8. 8.
    Nam, M.Y., Rhee, P.K.: A Scale and Viewing Point Invariant Pose Estimation. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS, vol. 3681, pp. 833–842. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Maio, D., Maltoni, D.: Real-time Face Location on Gray-scale Static Images. Pattern Recognition 33(9), 1525–1539 (2000)CrossRefGoogle Scholar
  10. 10.
    Viola, P., Jones, M.: Robust Real Time Object Detection. In: IEEE ICCV Workshop Statistical and Computational Theories of Vision (2001)Google Scholar
  11. 11.
    Li, S.Z., Zhu, L., Zhang, Z.Q., Blake, A., et al.: Statistical Learning of Multi-View Face Detection. In: Proc. European Conf. Computer Vision, vol. 4, pp. 67–81 (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mi Young Nam
    • 1
  • Phill Kyu Rhee
    • 1
  1. 1.Dept. of Computer Science & EngineeringInha UniversityIncheon, Nam-GuSouth Korea

Personalised recommendations