Local Optima Properties and Iterated Local Search Algorithm for Optimum Multiuser Detection Problem

  • Shaowei Wang
  • Qiuping Zhu
  • Lishan Kang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4113)


Optimum multiuser detection (OMD) in direct-sequence code-division multiple access (DS-CDMA) communication systems is an NP-complete combinatorial optimization problem. The first contribution of this paper is the theoretical investigation of the OMD problem. Its fitness landscape is specified by a set of neighborhoods of all points of the search space. The number and the distributions of local optima are studied in detail. Investigation results give hints how to choose the modification operators and design more efficient random search heuristics for this problem. Then an efficient iterated local search algorithm is proposed for multiuser detection and simulation results show that it can provide rather good performance for cases where other algorithms perform poorly.


Local Optimum Spreading Factor Fitness Landscape Multiuser Detection Iterate Local Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Verdu, S.: Minimum Probability of Error for Asynchronous Gaussian Multiple-access Channels. IEEE Transactions on Information Theory 32(1), 85–96 (1986)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Verdu, S.: Computational Complexity of Optimal Multiuser Detection. Algorithmica 4, 303–312 (1989)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Lim, H.S., Rao, M.V.C., Alan, W.C., Chuah, H.T.: Mulatiuser Detection for DS-CDMA Systems Using Evolutionary Programming. IEEE Communications Letters 7(3), 101–103 (2003)CrossRefGoogle Scholar
  4. 4.
    Hu, J., Rick, S.B.: A Gradient Guided Search Algorithm for Multiuser Detection. IEEE Communications Letters 4(11), 340–342 (2000)CrossRefGoogle Scholar
  5. 5.
    Lim, H.S., Venkatesh, B.: An Efficient Local Search Heuristics for Asynchronous Multiuser Detection. IEEE Communications Letters 7(6), 299–301 (2003)Google Scholar
  6. 6.
    Stadler, P.F.: Fitness Landscape. Lecture Notes in Physics, pp. 183–204. Springer, Heidelberg (2002)Google Scholar
  7. 7.
    Palmer, R.: Optimization on Rugged Landscapes. In: Perelson, A.S., Kauffman, S.A. (eds.) Molecular Evolution on Rugged Landscapes: Proteins, RNA, and the Immune System, pp. 3–25 (1991)Google Scholar
  8. 8.
    Weinberger, E.D.: Correlated and Uncorrelated Fitness Landscapes and How to Tell the Difference. Biological Cybernetics 63, 325–336 (1990)MATHCrossRefGoogle Scholar
  9. 9.
    Peter, M., Bernd, F.: Fitness Landscape Analysis and Memetic Algorithms for the Quadratic Assignment Problem. IEEE Transactions on Evolutionary Computation 4(4), 337–352 (2000)CrossRefGoogle Scholar
  10. 10.
    Lourenco, H.R., Martin, O., Thomas, S.: A Beginner’s Introdution to Iterated Local Search. In: Procedings of the 4th Metaheuristics International Conference, pp. 1–6 (2001)Google Scholar
  11. 11.
    Holger, H., Thomas, S.: Stochastic Local Search: Foundations and Applications. Morgan Kaufmann Publishers, San Francisco (2004)Google Scholar
  12. 12.
    Verdu, S.: Multiuser Detection. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  13. 13.
    Dariush, D., Marvin, K.S., Dan, R.: Improved Parallel Interference Cancellation for CDMA. IEEE Transactions on Communications 46(2), 258–268 (1998)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shaowei Wang
    • 1
  • Qiuping Zhu
    • 1
  • Lishan Kang
    • 2
  1. 1.School of Electronic InformationWuhan UniversityWuhanP.R. China
  2. 2.State Key Laboratory of Software EngineeringWuhan UniversityWuhanP.R. China

Personalised recommendations