Identifying the Modular Structures in Protein Interaction Networks

  • Yanen Li
  • Feng Lu
  • Yanhong Zhou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4115)


Identifying the modular structures in Protein Interaction Networks (PINs) is crucial to the understanding of the organization and function of biological systems. We propose a new module definition taking into account the degree of a subgraph instead of a vertice, and design a corresponding agglomerative algorithm, which is implemented into a computational tool called ModuleSpider, to recognize modules within a network. The application of ModuleSpider to the yeast core protein interaction network identifies 97 simple modules which are biologically meaningful according to the GO annotation of proteins in the modules. In addition, the results of comparison analysis demonstrate that ModuleSpider modules show stronger biological relevance. Further, the ModuleSpider is able to construct the interaction web of modules, which provides insights to the high level relationships of different functional modules. ModuleSpider is freely available upon request to the authors.


Simple Module Modular Structure Protein Interaction Network Strong Module Weak Module 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barabasi, A.L., Oltvai, Z.N.: Network Biology: Understanding The Cell’s Functional Organization. Nat. Rev. Genet. 5(2), 101–113 (2004)CrossRefGoogle Scholar
  2. 2.
    Hartwell, L.H., Hopfield, J.J., Leibler, S.: From Molecular to Modular Cell Biology. Nature 402(6761), C47–C52 (1999)CrossRefGoogle Scholar
  3. 3.
    Ravasz, E., Somera, A.L., Mongru, D.A.: Hierarchical Organization of Modularity in Metabolic Networks. Science 297(5586), 1551–1555 (2002)CrossRefGoogle Scholar
  4. 4.
    Rives, A.W., Galitski, T.: Modular Organization of Cellular Networks. Proc. Natl. Acad. Sci. U.S.A. 100(3), 1128–1133 (2003)CrossRefGoogle Scholar
  5. 5.
    Uetz, P., Giot, L., Cagney, G.: A Comprehensive Analysis of Protein-protein Interactions in Saccharomyces Cerevisiae. Nature 403(6770), 623–627 (2000)CrossRefGoogle Scholar
  6. 6.
    Gavin, A.C., Bosche, M., Krause, R.: Functional Organization of The Yeast Proteome by Xystematic Analysis of Protein Complexes. Nature 415(6868), 141–147 (2002)CrossRefGoogle Scholar
  7. 7.
    Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of Functional Modules from Protein Interaction Networks. Proteins 54(1), 49–57 (2004)CrossRefGoogle Scholar
  8. 8.
    Arnau, V., Mars, S., Marin, I.: Iterative Cluster Analysis of Protein Interaction Cata. Bioinformatics 21(3), 364–378 (2005)CrossRefGoogle Scholar
  9. 9.
    MacCuish, J., Nicolaou, C., MacCuish, N.E.: Ties in Proximity and Clustering Compounds. J. Chem. Inf. Comput. Sci. 41(1), 134–146 (2001)Google Scholar
  10. 10.
    Asthana, S., King, O.D., Gibbons, F.D.: Predicting Protein Complex Membership Using Probabilistic Network Reliability. Genome Res. 14(6), 1170–1175 (2004)CrossRefGoogle Scholar
  11. 11.
    Spirin, V., Mirny, L.A.: Protein Complexes and Functional Modules in Molecular Networks. Proc. Natl. Acad. Sci. U.S.A. 100(21), 12123–12128 (2003)CrossRefGoogle Scholar
  12. 12.
    Bader, G.D., Hogue, C.W.: An Automated Method for Finding Molecular Complexes in Large Protein Interaction Networks. BMC Bioinformatics, 42 (2003)Google Scholar
  13. 13.
    Gagneur, J., Krause, R., Bouwmeester, T., et al.: Modular Decomposition of Protein-protein Interaction Networks. Genome Biol. 5(8), R57 (2004)CrossRefGoogle Scholar
  14. 14.
    Zhang, C., Liu, S., Zhou, Y.: Fast and Accurate Method for Identifying High-quality Protein-interaction Modules by Clique Merging and Its Application to Yeast. J. Proteome. Res. 5(4), 801–807 (2006)CrossRefGoogle Scholar
  15. 15.
    Bu, D., Zhao, Y., Cai, L.: Topological Structure Analysis of The Protein-protein Interaction Network in Budding Yeast. Nucleic Acids Res. 31(9), 2443–2450 (2003)CrossRefGoogle Scholar
  16. 16.
    Girvan, M., Newman, M.E.: Community Structure in Social and Biological Networks. Proc. Natl. Acad. Sci. U.S.A. 99(12), 7821–7826 (2002)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Radicchi, F., Castellano, C., Cecconi, F.: Defining and Identifying Communities in Networks. Proc. Natl. Acad. Sci. U.S.A. 101(9), 2658–2663 (2004)CrossRefGoogle Scholar
  18. 18.
    Xenarios, I., Salwinski, L., Duan, X.J.: DIP, The Database of Interacting Proteins: A Research Tool for Studying Cellular Networks of Protein Interactions. Nucleic Acids Res. 30(1), 303–305 (2002)CrossRefGoogle Scholar
  19. 19.
    Newman, M.E.: Fast Algorithm for Detecting Community Structure in Networks. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 69(6 Pt 2), 066133 (2004)CrossRefGoogle Scholar
  20. 20.
    Wasserman, S., Faust, K.: Social Network Analysis. Cambridge Univ. Press, Cambridge (1994)Google Scholar
  21. 21.
    Newman, M.E., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E. Stat. Nonlin. Soft. Matter Phys. 68 (3Pt 2), 036122 (2003)CrossRefGoogle Scholar
  22. 22.
    Deane, C.M., Salwinski, L., Xenarios, I., et al.: Protein Interactions: Two Methods for assessment of The Reliability of High Throughput Observations. Mol. Cell Proteomics 1(5), 349–356 (2002)CrossRefGoogle Scholar
  23. 23.
    Cherry, J.M., Adler, C., Ball, C.: SGD: Saccharomyces Genome Database. Nucleic Acids Res. 26(1), 73–79 (1998)CrossRefGoogle Scholar
  24. 24.
    Robinson, R.C., Turbedsky, K., Kaiser, D.A.: Crystal Structure of Arp2/3 complex. Science 294(5547), 1679–1684 (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yanen Li
    • 1
  • Feng Lu
    • 1
  • Yanhong Zhou
    • 1
  1. 1.Hubei Bioinformatics and Molecular Imaging Key LaboratoryHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations