Analysis of Numerical Solutions to Stochastic Age-Dependent Population Equations

  • Qimin Zhang
  • Xining Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4115)


In this paper, stochastic age-dependent population equations, one of the important classes of hybrid systems, are studied. In general, most of stochastic age-dependent population equations do not have explicit solutions. Thus numerical approximation schemes are invaluable tools for exploring their properties. The main purpose of this paper is to develop a numerical scheme and show the convergence of the numerical approximation solution to the true solution.


Herpes Zoster Explicit Solution True Solution Preceding Hypothesis Numerical Approximation Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cushing, J.: The Dynamics of Hierarchical Age-structured Populations. J. Math. Biol. 32, 705–729 (1994)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Allen, L., Thrasher, D.: The Effects of Vaccination in An Age-dependent Model for Varicella and Herpes Zoster. IEEE Tran. Auto. Contr. 43, 779–789 (1998)CrossRefGoogle Scholar
  3. 3.
    Zhang, Q., Liu, W., Nie, Z.: Existence, Uniqueness and Exponential Stability for Stochastic Age-dependent Population. Appl. Math. Compu. 154, 183–201 (2004)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Pollard, J.: On The Use of The Direct Matrix Product in Analyzing Certain Stochastic Population Model. Biom. 53, 397–415 (1966)MATHMathSciNetGoogle Scholar
  5. 5.
    Zhang, Q., Han, C.: Numerical Analysis for Stochastic Age-dependent Population Equations. Appl. Math. Compu. 169, 278–294 (2005)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Abia, L., López-Marcos, J.: On The Numerical Integration of Non-local Terms for Age-structured Population Models. Math. Biosc. 157, 147–167 (1999)CrossRefGoogle Scholar
  7. 7.
    Kostova, T.: Numerical Solutions to Equations Modelling Nonlinearly Interacting Age-dependent Populations. Comput. Math. Applic. 19, 95–103 (1990)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Milner, F., Rabbiolo, G.: Rapidly Converging Numerical Algorithms for Models of Population Dynamics. J. Math. Biol. 30, 733–753 (1992)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qimin Zhang
    • 1
  • Xining Li
    • 1
  1. 1.School of Mathematics and Computer ScienceNingxia UniversityYinchuan NingxiaP.R. China

Personalised recommendations