Penalized Independent Component Discriminant Method for Tumor Classification

  • Chun-Hou Zheng
  • Li Shang
  • Yan Chen
  • Zhi-Kai Huang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4115)


This paper proposes a new method for tumor classification using gene expression data. In this method, we first employ independent component analysis (ICA) to model the gene expression data, then apply optimal scoring algorithm to classify them. To show the validity of the proposed method, we apply it to classify two DNA microarray data sets involving various human normal and tumor tissue samples. The experimental results show that the method is efficient and feasible.


Gene Expression Data Independent Component Analy Little Square Support Vector Machine Independent Component Analysis Principal Component Regression 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad Patterns of Gene Expression Revealed by Clustering Analysis of Tumor and Normal Colon Tissues Probed by Oligonucleotide Arrays. Proc. Natl Acad. Sci. USA 96, 6745–6750 (1999)CrossRefGoogle Scholar
  2. 2.
    Bartlett, M.S., Movellon, J.R., Sejnowski, T.J.: Face Recognition by Independent Component Analysis. IEEE Trans. Neural Netw. 13, 1450–1464 (2002)CrossRefGoogle Scholar
  3. 3.
    Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., et al.: Molecular Classification of Cutaneous Malignant Melanoma by Gene Expression Profiling. Nature 406, 536–540 (2000)CrossRefGoogle Scholar
  4. 4.
    Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M.: Support Vector Machines Classification and Validation of Cancer Tissue Samples Using Microarray Expression Data. Bioinformatics 16, 906–914 (2000)CrossRefGoogle Scholar
  5. 5.
    Ghosh, D.: Penalized Discriminant Methods for the Classification of Tumors from Microarray Experiments. Biometrics 59, 992–1000 (2003)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular Classification of Cancer: Class Discovery and Class Prediction by Gene Expression Monitoring. Science 286, 531–537 (1999)CrossRefGoogle Scholar
  7. 7.
    Hastie, T., Buja, A., Tibshirani, R.: Penalized Discriminant Analysis by Optimal Scoring. Annals of Statistics 23, 73–102 (1995)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Hastie, T., Tibshirani, R., Buja, A.: Flexible Discriminant Analysis by Optimal Scoring. Journal of the American Statistical Association 89, 1255–1270 (1994)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Hori, G., Inoue, M., Nishimura, S., Nakahara, H.: Blind Gene Classification Based on ICA of Microarray Data. In: Proc. 3rd Int. Workshop on Independent Component Analysis and Blind Signal Separation (ICA 2001), pp. 332–336 (2001)Google Scholar
  10. 10.
    Hyvärinen, A.: Fast and Robust Fixed-point Algorithms for Independent Component Analysis. IEEE Trans. Neural Netw. 10, 626–634 (1999)CrossRefGoogle Scholar
  11. 11.
    Liebermeister, W.: Linear modes of gene expression determined by independent component analysis. Bioinformatics 18, 51–60 (2002)CrossRefGoogle Scholar
  12. 12.
    Massy, W.F.: Principal Components Regression in Exploratory Statistical Research. Journal of the American Statistical Association 60, 234–246 (1965)CrossRefGoogle Scholar
  13. 13.
    Nutt, C.L., Mani, D.R., Betensky, R.A., Tamayo, P., Cairncross, J.G., Ladd, C., Pohl, U., Hartmann, C., McLaughlin, M.E., et al.: Gene Expression-based Classification of Malignant Gliomas Correlates Better with Survival Than Histological Classification. Cancer Res. 63, 1602–1607 (2003)Google Scholar
  14. 14.
    Pochet, N., De Smet, F., Suykens, J.A.K., De Moor, B.L.R.: Systematic Benchmarking of Microarray Data Classification: Assessing the Role of Non-linearity and Dimensionality Reduction. Bioinformatics 20, 3185–3195 (2004)CrossRefGoogle Scholar
  15. 15.
    Teschendorff, A.E., Wang, Y.Z., Barbosa-Morais, N.L., Brenton, J.D., Caldas, C.: A Variational Bayesian Mixture Modelling Framework for Cluster Analysis of Gene-Expression Data. Bioinformatics 21, 3025–3033 (2005)CrossRefGoogle Scholar
  16. 16.
    Tibshirani, R., Hastie, T., Narasimhan, B., Chu, G.: Diagnosis of Multiple Cancer Types by Shrunken Centroids of Gene Expression. Proc. Natl. Acad. Sci. USA 99, 6567–6572 (2002)CrossRefGoogle Scholar
  17. 17.
    West, M.: Bayesian Factor Regression Models in the ‘Large p, Small n’ Paradigm. Bayesian Statistics 7, 723–732 (2003)Google Scholar
  18. 18.
    Wang, H.Q., Huang, D.S.: Non-linear Cancer Classification Using a Modified Radial Basis Function Classification Algorithm. Journal of Biomedical Science 12, 819–826 (2005)CrossRefGoogle Scholar
  19. 19.
    Wang, H.Q., Huang, D.S.: Regulation Probability Method for Gene Selection. Pattern Recognition Letters 27, 116–122 (2006)MATHCrossRefGoogle Scholar
  20. 20.
    Wang, H.Q., Huang, D.S., Wang, B.: Optimization of Radial Basis Function Classifiers Using Simulated Annealing Algorithm for Cancer Classification. IEE Electronics Letters 41, 630–632 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Chun-Hou Zheng
    • 1
  • Li Shang
    • 2
  • Yan Chen
    • 1
  • Zhi-Kai Huang
    • 2
  1. 1.School of Information and Communication TechnologyQufu Normal UniversityRizhaoChina
  2. 2.Department of AutomationUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations