A General Solution for the Optimal Superimposition of Protein Structures

  • Qishen Li
  • Jian Shu
  • Zhaojun Shi
  • Dandan Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4115)


The theorem presented in this paper is a general solution for the optimal superimposition between two protein structures, which is actually the problem of the weighted optimal rigid superimposition between two vector sets with the same size. The theorem gives not only the rotational and translational parameters, but also the minimal value of the mean squared deviation of the optimal superimposition.


General Solution Rotation Matrix Translational Parameter Protein Structure Alignment Aeronautical Technology 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holm, L., Sander, C.: Searching Protein Structure Databases has come of Age. Proteins 19(3), 165–173 (1994)CrossRefGoogle Scholar
  2. 2.
    Gibrat, J.F., Madej, T., Bryant, S.H.: Surprising Similarities in Structure Comparison. Curr. Opin. Struct. Biol. 6(3), 377–385 (1996)CrossRefGoogle Scholar
  3. 3.
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E.: The Protein Data Bank. Nucleic Acids Res. 28(1), 235–242 (2000)CrossRefGoogle Scholar
  4. 4.
    Kolodny, R., Koehl, P., Levitt, M.: Comprehensive Evaluation of Protein Structure Alignment Methods: Scoring by Geometric Measures. J. Mol. Biol. 346(4), 1173–1188 (2005)CrossRefGoogle Scholar
  5. 5.
    Mcachlan, A.D.: A Mathematical Procedure for Superimposing Atomic Coordinates of Proteins. Acta Crystallogr. Sect. A 28(6), 656–657 (1972)CrossRefGoogle Scholar
  6. 6.
    Mcachlan, A.D.: Gene Duplications in the Structural Evolution of Chymotrypsin. J. Mol. Biol. 128(1), 49–79 (1979)CrossRefGoogle Scholar
  7. 7.
    Mcachlan, A.D.: Rapid Comparison of Protein Structures. Acta Crystallogr. Sect. A 38(6), 871–873 (1982)CrossRefGoogle Scholar
  8. 8.
    Kabsch, W.: A Solution for the best Rotation to Relate two Sets of Vectors. Acta Crystallogr. Sect. A 32(5), 922–923 (1976)CrossRefGoogle Scholar
  9. 9.
    Kabsch, W.: A Discussion of the Solution for the Best Rotation to Relate two Sets of Vectors. Acta Crystallogr. Sect. A 34(5), 827–828 (1978)CrossRefGoogle Scholar
  10. 10.
    Diamond, R.: On the Comparison of Conformations Using Linear and Quadratic Transformations. Acta Crystallogr. Sect. A 32(1), 1–10 (1976)CrossRefGoogle Scholar
  11. 11.
    Diamond, R.: A Note on the Rotational Superposition Problem. Acta Crystallogr. Sect. A 44(2), 211–216 (1988)CrossRefGoogle Scholar
  12. 12.
    Ferro, D.R., Hermans, J.: A Different Best Rigid-body Molecular Fit Routine. Acta Crystallogr. Sect. A 33(2), 345–347 (1977)CrossRefGoogle Scholar
  13. 13.
    Lesk, A.M.: A Toolkit for Computational Molecular Biology. II. On the Optimal Superpose- tion of two Sets of Coordinates. Acta Crystallogr. Sect. A 42(2), 110–113 (1986)Google Scholar
  14. 14.
    Kaindl, K., Steipe, B.: Metric Properties of the Root-Mean-Square Deviation of Vector Sets. Acta Crystallogr. Sect. A 53(6), 809 (1997)CrossRefGoogle Scholar
  15. 15.
    Steipe, B.: A Revised Proof of the Metric Properties of Optimally Superimposed Vector Sets. Acta Crystallogr. Sect. A 58(5), 506 (2002)CrossRefGoogle Scholar
  16. 16.
    Umeyama, S.: Least-squares Estimation of Transformation Parameters Between two Point Patterns. IEEE Trans. on Pattern Anal. Mach. Intell. 13(4), 376–386 (1991)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Qishen Li
    • 1
  • Jian Shu
    • 1
  • Zhaojun Shi
    • 1
  • Dandan Zhang
    • 1
  1. 1.Faculty of ComputingNanchang Institute of Aeronautical TechnologyNanchang, JiangxiP.R. China

Personalised recommendations