A New DNA-Based Approach to Solve the Maximum Weight Clique Problem

  • Aili Han
  • Daming Zhu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4115)


Given an undirected graph with weights on the vertices, the maximum weight clique problem is to find a subset of mutually adjacent vertices, i.e. a clique, which have the largest total weight. We devised a new DNA encoding method to solve the maximum weight clique problem whose basic idea is that each vertex on weighted graph is encoded by two DNA strands of different length and each edge is encoded by one DNA strand with a length of 20. The longer DNA strand corresponding to vertexv i consists of three parts and its center part is with a length of w i ; the shorter DNA strand is the reverse complementation of the longer one’s center part. We also gave the correspond- ing molecule algorithm and its biological implementation. The proposed DNA computing method can be expanded to solve other NP-hard problems, and it provides further evidence for the ability of DNA computing to solve numerical optimization problems.


Space Complexity Travel Salesman Problem Short Path Problem Encode Method Reverse Complementation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adleman, L.M.: Molecular Computation of Solutions to Combinatorial problems. Science 266, 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Lipton, R.J.: DNA solution of Hard Computational Problems. Science 268, 542–545 (1995)CrossRefGoogle Scholar
  3. 3.
    Ouyang, Q., Kaplan, P.D., Liu, S., et al.: DNA Solution of the Maximal Clique Problem. Science 278, 446–449 (1997)CrossRefGoogle Scholar
  4. 4.
    Head, T., Rozenberg, G., Bladergroen, R.S., et al.: Computing with DNA by Operating on Plasmids. Biosystems 57, 87–93 (2000)CrossRefGoogle Scholar
  5. 5.
    Sakamoto, K., Gouzu, H., Komiya, K., et al.: Molecular Computation by DNA Hairpin Formation. Science 288, 1223–1226 (2000)CrossRefGoogle Scholar
  6. 6.
    Narayanan, A., Zorbalas, S., et al.: DNA Algorithms for Computing Shortest Paths. In: Proceedings of the Genetic Programming, pp. 718–723. Morgan Kaufmann, San Francisco (1998)Google Scholar
  7. 7.
    Shin, S.Y., Zhang, B.T., Jun, S.S., et al.: Solving Traveling Salesman Problems Using Molecular Programming. In: Proceedings of the Congress on Evolutionary Computation, pp. 994–1000. IEEE Press, Los Alamitos (1999)Google Scholar
  8. 8.
    Yamamura, M., Hiroto, Y., Matoba, T.: Solutions of Shortest Path Problems by Concentration Control. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 231–240. Springer, Heidelberg (2002)Google Scholar
  9. 9.
    Lee, J.Y., Shin, S.Y., Park, T.H., et al.: Solving Traveling Salesman Problems with DNA Molecules Encoding Numerical Values. BioSystems 78, 39–47 (2004)CrossRefGoogle Scholar
  10. 10.
    Yin, Z.: DNA Computing in Graph and Combination Optimization, pp. 57–72. Science Press (2004) (in Chinese)Google Scholar
  11. 11.
    Ma, R., Zhang, Q., Gao, L., Xu, J.: Using DNA to Solve the Maximum Weight Clique of Graphs. ACTA Electronica Sinica 32, 13–16 (2004)Google Scholar
  12. 12.
    Xu, J., Wang, S., Pan, Q., Paun, G., Rozenberg, G., Salomaa, A.: write: DNA Computing: New Computing Paradigms, vol. 1, pp. 3–54. Tsinghua University publishing company (2004) (in Chinese)Google Scholar
  13. 13.
    Liu, W., Wang, S., Xu, J.: Research on the Encoding Method of DNA Computing. Computer Engineering and Applications 27, 118–121 (2003)MATHGoogle Scholar
  14. 14.
    Han, A., Yang, Z., et al.: Complexity Analysis for HEWN Algorithm. Journal of Software 13, 2337–2342 (2002) (in Chinese) Google Scholar
  15. 15.
    Han, A.: Complexity Research for B Algorithm. In: Proceedings of the Tenth Joint Internation-al Computer Conference, pp. 188–192. International Academic Publishers (2004)Google Scholar
  16. 16.
    Wang, L., Lin, Y., Li, Z.: DNA Computation for a Category of Special Integer Planning Problem. Computer Research and Development 42, 1431–1437 (2005) (in Chinese)CrossRefGoogle Scholar
  17. 17.
    Chen, Z., Li, X., Wang, L., et al.: A Surface-Based DNA Algorithm for the Perfect Matching Problem. Computer Research and Development 42, 1241–1246 (2005) (in Chinese)CrossRefGoogle Scholar
  18. 18.
    Lancia, G.: Integer Programming Models for Computional Biology Problems. Journal of Computer Science and Technology 19, 60–77 (2004)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ibrahim, Z., Tsuboi, Y., Muhammad, M.S., et al.: DNA Implementation of k-shortest Paths Computation. In: IEEE Congress on Evolutionary Computation. IEEE CEC 2005 Proceedings, vol. 1, pp. 707–713 (2005)Google Scholar
  20. 20.
    Liu, Q., Wang, L., Frutos, A.G., et al.: DNA Computing on Surfaces. Nature 403, 175–179 (2000)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Aili Han
    • 1
    • 2
  • Daming Zhu
    • 2
  1. 1.Department of Computer Science and TechnologyShandong UniversityWeihaiChina
  2. 2.School of Computer Science and TechnologyShandong UniversityJinanChina

Personalised recommendations