Study of Parametric Relation in Ant Colony Optimization Approach to Traveling Salesman Problem

  • Xuyao Luo
  • Fang Yu
  • Jun Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4115)


Presetting control parameters of algorithms are important to ant colony optimization (ACO). This paper presents an investigation into the relationship of algorithms performance and the different control parameter settings. Two tour building methods are used in this paper including the max probability selection and the roulette wheel selection. Four parameters are used, which are two control parameters of transition probability α andβ, pheromone decrease factor ρ, and proportion factor q 0 in building methods. By simulated result analysis, the parameter selection rule will be given.


Travel Salesman Problem Travel Salesman Problem Roulette Wheel Selection Tour Length Global Good Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Colorni, A., Dorigo, M., Maniezzo, V.: An Investigation of Some Properties of an ‘Ant Algorith’. In: PPSN, pp. 515–526 (1992)Google Scholar
  2. 2.
    Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant Algorithms for Distributed Discrete Optimization. Artificial Life 5, 137–172 (1995)CrossRefGoogle Scholar
  3. 3.
    Zhang, J., Henry, S.H., Chung, W.L.L.: Adaptive Genetic Algorithms using Clustering Technique. IEEE Trans. Evolutionary Computation (Accepted)Google Scholar
  4. 4.
    Zhang, J.: Chaotic Time Series Prediction using Lyapunov Exponents in Embedding Phase Space. Computer & Electrical Engineering 30(1), 1–15 (2004)MATHCrossRefGoogle Scholar
  5. 5.
    Zhang, J., Lo, W.L., Henry, S.H.: Design and Optimization of Power Electronics Regulators Using Pseudo-Coevolutionary Genetic Algorithms. IEEE Trans. Systems, Man, and Cybernetics, Part C (In Press)Google Scholar
  6. 6.
    Huang, D.S., Horace, H.S.: Zeroing Polynomials Using Modi-fied Constrained Neural Network Approach. IEEE Trans. On Neural Networks 16(3), 721–732 (2005)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Huang, D.S., Zhao, W.B.: Determining the Centers of Radial Basis Probabilities Neural Networks by Recursive Orthogonal Least Square Algorithms. Applied Mathematics and Computation 162(1), 461–473 (2005)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Huang, D.S.: A Constructive Approach for Finding Arbitrary Rroots of Polynomials by Neural Network. IEEE Transactions on Neural Network 15(2), 477–491 (2004)CrossRefGoogle Scholar
  9. 9.
    Huang, D.S., Horace, H.S., Ip, C.Z.R., Wong, H.S.: Dilation Method for Finding Close Roots of Polynomials Based on Constrained Learning Neural Networks. Physics Letters A 309(5-6), 443–451 (2003)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Dorigo, M., Gambardella, L.M.: Ant Colony System: A Cooperative Learning Approach toTSP. IEEE Trans. Evol. Comput 1, 53–66 (1997)CrossRefGoogle Scholar
  11. 11.
    Gambardella, L.M., Dorigo, M.: Ant-Q: A Reinforcement Learning Approach to theTraveling Salesman Problem. In: ICML, pp. 252–260 (1995)Google Scholar
  12. 12.
    Dorigo, M., Caro, G.D.: Ant Colony Optimization: A New Meta-Heuristic. Evolutionary Computation, 1999. In: CEC 1999. Proceedings of the 1999 Congress, July 6-9, 1999 , vol. 2 (1999)Google Scholar
  13. 13.
    Colorni, A., Dorigo, M., Maniezzo, V., Trubian, M.: Ant System for Job-Shop Scheduling. Belgian Journal of Operations Research, Statistics and Computer Science, 39–54 (1993)Google Scholar
  14. 14.
    Zhang, J., Hu, X.M., Tan, X., Zhong, J.H., Huang, Q.: Implementation of an Ant Colony Optimization Technique for Job Shop Scheduling Problem. Transactions of the Institute of Measurement and Control 28(1), 1–16 (2006)CrossRefGoogle Scholar
  15. 15.
    Blum, C., Dorigo, M.: Search Bias in Ant Colony Optimization: On the Role of Competi-tion-Balanced Systems. IEEE Trans. Evol. Comput 9, 159–174 (2005)CrossRefGoogle Scholar
  16. 16.
    Kannan, S., Slochanal, S.M.R., Padhy, N.P.: Application and Compari-son of Metaheuristic Techniques to Generation Expansion Planning Problem. IEEE Trans. Power systems 20, 466–475 (2005)CrossRefGoogle Scholar
  17. 17.
    Dorigo, M., Maniezzo, V., Colorni, A.: Ant System: Optimization by a Col-ony of Cooperating Agents. IEEE Trans, Systems, Man, and Cybernetics-Part B Cybernetics 26, 19–41 (1996)CrossRefGoogle Scholar
  18. 18.
    Zecchin, A.C., Simpson, A.R., Maier, H.R., Nixon, J.B.: Parametric Study for an Ant Algorithm Applied to Water Distribution System Optimization. IEEE Trans. Evol. Comput. 9, 175–191 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Xuyao Luo
    • 1
    • 3
  • Fang Yu
    • 2
  • Jun Zhang
    • 1
    • 3
  1. 1.Department of Computer ScienceSUN Yat-sen UniversityP.R. China
  2. 2.Department of Computer Science and TechnologyJinan UniversityP.R. China
  3. 3.Guangdong Key Lab of Information Security 

Personalised recommendations