DNA Computing Processor: An Integrated Scheme Based on Biochip Technology for Performing DNA Computing

  • Yan-Feng Wang
  • Guang-Zhao Cui
  • Bu-Yi Huang
  • Lin-Qiang Pan
  • Xun-Cai Zhang
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4115)


An integrated scheme based on biochip technology for performing DNA computing is proposed here. This work is motivated by the goal of integrating all the steps of DNA computing into one machine called DNA computing processor. The basic structure of processor consists of making DNA micro-arrays unit, encoding DNA sequences unit, micro-reaction unit, solution extraction unit and micro-control unit. The functions of each unit are discussed in detail, especially for the solution extraction unit, where the optimal solution spaces are extracted. Finally, conclusions are drawn and future studies are discussed.


Integrate Scheme Polymer Chain Reaction Microchip Capillary Electrophoresis Modularized Design Method Biological Operation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 11, 1021–1023 (1994)CrossRefGoogle Scholar
  2. 2.
    Meng, D.Z., Cao, H.P.: DNA Computing and Biological Mathematics. Acta Biophysica Sinica (in Chinese) 2, 163–174 (2002)Google Scholar
  3. 3.
    Charlot, B., et al.: Research Activities,
  4. 4.
    Gabig, M., Wegrzyn, G.: An Introduction to DNA Chips: Principles, Technology, Applications and Analysis. Acta Biochimica Polonica 3, 615–622 (2001)Google Scholar
  5. 5.
    Garzon, M.H., Deaton, R.J.: Codeword Design and Information Encoding in DNA Ensembles. Natural Computing 3, 253–292 (2004)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Tanaka, F., Nakatsugawa, M., Yamamoto, M., Shiba, T., Ohuchi, A.: Developing Support System for Sequence Design in DNA Computing. In: Proc. 7th Int. Workshop DNA Based Comput., pp. 340–349 (2001)Google Scholar
  7. 7.
    Frutos, A.G., et al.: Demonstration of a Word Design Strategy for DNA Computing on Surfaces. Nucleic Acids Res. 23, 4748–4757 (1997)CrossRefGoogle Scholar
  8. 8.
    Faulhammer, D., Cukras, A.R., Lipton, R.J., Landweber, L.F.: Molecular Computation: RNA Solutions to Chess Problems. Proc. Natl. Acad. Sci. U.S.A. 97, 1385–1389 (2000)CrossRefGoogle Scholar
  9. 9.
    Arita, M., Kobayashi, S.: DNA Sequence Design Using Templates. New Generation Comput. 20, 263–277 (2002)MATHCrossRefGoogle Scholar
  10. 10.
    Arita, M., et al.: Improving Sequence Design for DNA Computing. In: Proc. Genetic Evol. Comput., pp. 875–882 (2000)Google Scholar
  11. 11.
    Tuplan, D.C., Hoose, H., Condon, A.: Stochastic Local Search Algorithms for DNA Word Design. In: Proc. 8th Int. Workshop DNA Based Comput., pp. 229–241 (2002)Google Scholar
  12. 12.
    Andronescu, M., et al.: Algorithms for Testing that DNA Word Designs Avoid Unwanted Secondary Structure. In: Proc. 8th Int. Workshop DNA Based Comput., pp. 182–195 (2002)Google Scholar
  13. 13.
    Zhang, B.T., Shin, S.Y.: Molecular Algorithms for Efficient and Reliable DNA Computing. In: Proc. Genetic Program (GP), pp. 735–742 (1998)Google Scholar
  14. 14.
    Feldkamp, U., Saghafi, S., Banzhaf, W., Rauhe, H.: DNA Sequence Generator–A Program for the Construction of DNA Sequences. In: Proc.7th Int. Workshop DNA Based Comput., pp. 179–188 (2001)Google Scholar
  15. 15.
    Hartemink, A.J., Gifford, D.K., Khodor, J.: Automated Constraint Based Nucleotide Sequence Selection for DNA Computation. In: Proc. 4th DIMACS Workshop DNA Based Comput., pp. 227–235 (1998)Google Scholar
  16. 16.
    Deaton, R., Chen, J., Bi, H., Rose, J.A.: A Software Tool for Generating Noncrosshybridization Libraries of DNA Oligonucleotides. In: Proc. 8th Int. Workshop DNA Based Comput., pp. 252–261 (2002)Google Scholar
  17. 17.
    Deaton, R., et al.: A PCR-Based Protocol for in Vitro Selection of Noncrosshybridizing Olgionucleotides. In: Proc. 8th Int. Workshop DNA Based Comput., pp. 196–204 (2002)Google Scholar
  18. 18.
    Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of Nucleic Acid Sequences for DNA Computing Based on a Thermodynamic Approach. Nucleic Acids Res. 3, 903–911 (2005)CrossRefGoogle Scholar
  19. 19.
    Shin, S.Y., Lee, I.H., Kim, D., Zhang, B.T.: Multi-Objective Evolutionary Optimization of DNA Sequences for Reliable DNA Computing. IEEE Trans. Evol. Comput. 2, 143–158 (2005)CrossRefGoogle Scholar
  20. 20.
    Taylor, T.B., Emily, S., et al.: Optimization of the Performance of the Polymerase Chain Reaction in Silicon-Based Microstructures. Nucleic Acids Res. 15, 3164–3168 (1997)CrossRefGoogle Scholar
  21. 21.
    Braich, R.S., Chelyapov, N., et al.: Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 19, 499–502 (2002)CrossRefGoogle Scholar
  22. 22.
    Liu, Q.H., Wang, L., et al.: DNA Computing on Surfaces. Nature 13, 175–178 (2000)Google Scholar
  23. 23.
    Zhang, F.Y., Yin, Z.X., et al.: DNA Computation Model to Solve 0-1 Programming Problem. Biosystems 74, 9–14 (2004)CrossRefGoogle Scholar
  24. 24.
    Shi, X.L., Li, X., Zhang, Z., et al.: Improce Capability of DNA Automaton: DNA Automaton with three Internal States and Tape Head Move in Two Directions. In: Huang, D.-S., Zhang, X.-P., Huang, G.-B. (eds.) ICIC 2005. LNCS, vol. 3645, pp. 71–79. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Wang, H., Lin, B.C.: Capillary Electrophoresis on Microchip and its Application in Life Science. Journal of Analytical Chemistry (in Chinese) 3, 359–364 (2002)Google Scholar
  26. 26.
    Thompson, S.: Chemiluminescent Detection of Nucleic Acids. International Biotechnology Laboratory 10, 14 (2000)Google Scholar
  27. 27.
    Momoko, K., Tamao, O., et al.: Laser-Induced Fluorescence Microscopic System Using an Optical Parametric Oscillator for Tunable Detection in Microchip Analysis. Analytical and Bioanalytical Chemistry 4, 992–995 (2005)Google Scholar
  28. 28.
    Scott, E., Van, B.: An Introduction to Mass Spectrometry,
  29. 29.
    Walter, R., Vandaveer, S.A., et al.: Recent Developments in Electrochemical Detection for Microchip Capillary Electrophoresis. Electrophoresis 25, 3528–3549 (2004)CrossRefGoogle Scholar
  30. 30.
    Ennis, M.A., Gelfand, D.H., et al.: PCR Protocols: a Guide to Methods and Applications. Academic Press, Inc., London (1990)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yan-Feng Wang
    • 1
    • 2
  • Guang-Zhao Cui
    • 1
    • 2
  • Bu-Yi Huang
    • 2
  • Lin-Qiang Pan
    • 1
  • Xun-Cai Zhang
    • 1
  1. 1.Research Institute of Biomolecular ComputerHuazhong University of Science and TechnologyWuhan, HubeiChina
  2. 2.College of Electrical and Electronic EngineeringZhengzhou University of Light IndustryZhengzhou, HenanChina

Personalised recommendations