Phase Transition of a Skeleton Model for Surfaces

  • Hiroshi Koibuchi
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4115)


A spherical model of skeleton with junctions is investigated by Monte Carlo simulations. The model is governed by one-dimensional bending energy. The results indicate that the model undergoes a first-order transition, which separates the smooth phase from the crumpled phase. The existence of phase transition indicates that junctions play a non-trivial role in the transition.


Phase Transition Monte Carlo Surface Section Skeleton Model Smooth Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Helfrich, W.: Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforsch. 28c, 693–703 (1973)Google Scholar
  2. 2.
    Polyakov, A.M.: Fine Structure of Strings. Nucl. Phys. B 268, 406–412 (1986)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Kleinert, H.: The Membrane Properties of Condensing Strings. Phys. Lett. B 174, 335–338 (1986)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Nelson, D.: The Statistical Mechanics of Membranes and Interfaces. In: Nelson, D., Piran, T., Weinberg, S. (eds.) Statistical Mechanics of Membranes and Surfaces, 2nd edn., pp. 1–16. World Scientific, Singapore (2004)Google Scholar
  5. 5.
    Gompper, G., Schick, M.: Self-assembling Amphiphilic Systems. In: Domb, C., Lebowitz, J.L. (eds.) Phase Transitions and Critical Phenomena 16, pp. 1–176. Academic Press, London (1994)Google Scholar
  6. 6.
    Bowick, M., Travesset, A.: The Statistical Mechanics of Membranes. Phys. Rep. 344, 255–308 (2001)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Peliti, L., Leibler, S.: Effects of Thermal Fluctuations on Systems with Small Surface Tension. Phys. Rev. Lett. 54(15), 1690–1693 (1985)CrossRefGoogle Scholar
  8. 8.
    David, F., Guitter, E.: Crumpling Transition in Elastic Membranes: Renormalization Group Treatment. Europhys. Lett. 5(8), 709–713 (1988)CrossRefGoogle Scholar
  9. 9.
    Paczuski, M., Kardar, M., Nelson, D.R.: Landau Theory of the Crumpling Transition. Phys. Rev. Lett. 60, 2638–2640 (1988)CrossRefGoogle Scholar
  10. 10.
    Kantor, Y., Nelson, D.R.: Phase Transitions in Flexible Polymeric Surfaces. Phys. Rev. A 36, 4020–4032 (1987)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kownacki, J.-P., Diep, H.T.: First-order Transition of Tethered Membranes in Three-dimensional Space. Phys. Rev. E 66, 066105(1– 5) (2002)Google Scholar
  12. 12.
    Koibuchi, H., Kuwahata, T.: First-order Phase Transition in the Tethered Surface Model on a Sphere. Phys. Rev. E 72, 026124(1–6) (2005)Google Scholar
  13. 13.
    Endo, I., Koibuchi, H.: First-order Phase Transition of the Tethered Membrane Model on Spherical Surfaces. Nucl. Phys. B 732 [FS], 426–443 (2006)CrossRefGoogle Scholar
  14. 14.
    Chaieb, S., Natrajan, V.K., El-rahman, A.A.: Glassy Conformation in Wrinkled Membranes. Phys. Rev. Lett. 96, 078101(1–4) (2006)Google Scholar
  15. 15.
    Murase, K., Fujiwara, T., Umehara, Y., Suzuki, K., Iino, R., Yamashita, H., Saito, M., Murakoshi, H., Ritohie, K., Kusumi, A.: Ultrafine Membrane Compartments for Molecular Diffusion as Revealed by Single Molecule Techniques. Biol. J. 86, 4075–4093 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Hiroshi Koibuchi
    • 1
  1. 1.Ibaraki National College of TechnologyHitachinaka, IbarakiJapan

Personalised recommendations