Collective Behavior of an Anisotropic Swarm Model Based on Unbounded Repulsion in Social Potential Fields

  • Liang Chen
  • Li Xu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4115)


Swarm system with flexible structures adapts well to variable environment. In this article, we propose an anisotropic swarm model based on unbounded repulsion and social potential fields. The unbounded repulsion ensures the independence among autonomous agents in social potential fields, which consist of obstacles to avoid and targets to move towards. Simulation results show that the aggregating swarm can construct various formations by changing its anisotropy coefficient, and the collective behavior of mass individuals emerges from combination of the inter-individual interactions and the interaction of the individual with outer circumstances.


Collective Behavior Collective Motion Mass Individual Swarm System IEEE Control System Magazine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Grünbaum, D.: Schooling as A Strategy for Taxis in A Noisy Environment. Evolutionary Ecol. 12, 503–522 (1998)CrossRefGoogle Scholar
  2. 2.
    Giulietti, F., Pollini, L., Innocenti, M.: Autonomous Formation Flight. IEEE Control System Magazine 20, 34–44 (2000)CrossRefGoogle Scholar
  3. 3.
    Balch, T., Arkin, R.C.: Behavior-Based Formation Control for Multirobot Teams. IEEE Trans. Robot Automat. 14, 926–939 (1998)CrossRefGoogle Scholar
  4. 4.
    Desai, J.P., Ostrowski, J., Kumar, V.: Controlling Formations of Multiple Mobile Robots. In: Proc. of IEEE Int. Conf. Robotics Automation, pp. 2864–2869 (1998)Google Scholar
  5. 5.
    Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns. SIAM J. Comput. 28(4), 1347–1363 (1998)CrossRefMathSciNetGoogle Scholar
  6. 6.
    Egerstedt, M., Hu, X.: Formation Constrained Multi-Agent Control. IEEE Trans. Robot. Automat. 17, 947–951 (2001)CrossRefGoogle Scholar
  7. 7.
    Grünbaum, D., Okubo, A.: Modeling Social Animal Aggregations. In: Frontiers in Theoretical Biology, vol. 100, pp. 296–325. Springer, New York (1994)Google Scholar
  8. 8.
    Reynolds, C.: Flocks, Herds, and Schools: A Distributed Behavioral Model. Computer Graphics 21(4), 25–34 (1987)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Mogilner, A., Edelstein-Keshet, L.: A Non-Local Model for A Swarm. Journal of Mathematical Biology 38, 534–570 (1999)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Czirok, A., Vicsek, T.: Collective Behavior of Interacting Self-Propelled Particles. Physica. A. 281, 17–29 (2000)CrossRefGoogle Scholar
  11. 11.
    Shimoyama, N., Sugawa, K., Mizuguchi, T., Hayakawa, Y., Sano, M.: Collective Motion in A System of Motile Elements. Phys. Rev. Lett. 76(20), 3870–3873 (1996)CrossRefGoogle Scholar
  12. 12.
    Warburton, K., Lazarus, J.: Tendency-Distance Models of Social Cohesion in Animal Groups. Journal of Theoretical Biology 150, 473–488 (1991)CrossRefGoogle Scholar
  13. 13.
    Gazi, V., Passino, K.M.: Stability Analysis of Swarms. IEEE Trans. Automat. Contr. 48, 692–697 (2003)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Chen, L., Xu, L.: An Aggregating Swarm Model Based on Unbounded Repulsion. Journal of Zhejiang University Engineering Science (accepted to appear, 2006)Google Scholar
  15. 15.
    Chu, T., Wang, L., Mu, S.: Collective Behavior Analysis of An Anisotropic Swarm Model. In: Proc. of the 16th International Symposium on Mathematical Theory of Networks and Systems (2004)Google Scholar
  16. 16.
    Reif, J.H., Wang, H.: Social Potential Fields: A Distributed Behavioral Control for Autonomous Robots. Robot. Auton. Syst. 27, 171–194 (1999)CrossRefGoogle Scholar
  17. 17.
    Rimon, E., Koditschek, D.E.: Exact Robot Navigation Using Artificial Potential Functions. IEEE Trans. Robot. Automat. 8, 501–518 (1992)CrossRefGoogle Scholar
  18. 18.
    Gazi, V., Passino, K.M.: Stability Analysis of Social Foraging Swarms. IEEE Trans. Systems, Man, and Cybernetics 34(1), 539–557 (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Liang Chen
    • 1
  • Li Xu
    • 1
  1. 1.College of Electrical EngineeringZhejiang UniversityHangzhouP.R. China

Personalised recommendations