Advertisement

Abstract

Exploiting the fact that one is dealing with time signals, it is possible to formulate certain blind source (or signal) separation tasks in terms of a simple generalized eigenvalue decomposition based on two matrices. Many of the techniques determine these two matrices using second-order statistics, e.g., variance, covariance, autocorrelation, etc.

In this work, we present a second-order, covariance-based method to determine the independent components of a linear mixture of sources. This is accomplished without the use of a possible temporal variable on which the data may depend, i.e., we explicitly avoid the use of autocorrelations, time delay, etc. in our formulation. The latter makes it possible to apply the simple eigenvalue decomposition-based technique to general pattern recognition methods and as such to find possible independent components of generic point clouds.

Keywords

Independent Component Analysis Independent Component Analysis Source Separation Blind Source Separation Blind Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Abed-Meraim, K., Xiang, Y., Manton, J.H., Hua, Y.: Blind source separation using second-order cyclostationary statistics. IEEE Transactions on Signal Processing 49, 694–701 (2001)CrossRefGoogle Scholar
  2. 2.
    Belouchrani, A., Meraim, K.A., Cardoso, J.-F., Moulines, E.: A blind source separation technique using second order statistics. IEEE Transactions on Signal Processing 45, 434–444 (1997)CrossRefGoogle Scholar
  3. 3.
    Buchner, H., Aichner, R., Kellermann, W.: A generalization of blind source separation algorithms for convolutive mixtures based on second-order statistics. IEEE Transactions on Speech and Audio Processing 13, 120–134 (2005)CrossRefGoogle Scholar
  4. 4.
    Cardoso, J.-F.: Blind signal separation: Statistical principles. Proceedings of the IEEE 86, 2009–2025 (1998)CrossRefGoogle Scholar
  5. 5.
    Cardosoand, J.-F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. IEE Proceedings-F 140, 362–370 (1993)Google Scholar
  6. 6.
    Choi, S., Cichocki, A., Beloucharni, A.: Second order nonstationary source separation. Journal of VLSI Signal Processing 32, 93–104 (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Cichocki, A., Amari, S.-i.: Adaptive Blind Signal and Image Processing, 1st edn. John Wiley & Sons, Chichester (2002)CrossRefGoogle Scholar
  8. 8.
    Cichocki, A., Zurada, J.M.: Blind signal separation and extraction: Recent trends, future perspectives, and applications. In: Rutkowski, L., Siekmann, J.H., Tadeusiewicz, R., Zadeh, L.A. (eds.) ICAISC 2004. LNCS (LNAI), vol. 3070, pp. 30–37. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Deville, Y., Benali, M., Abrard, F.: Differential source separation for underdetermined instantaneous or convolutive mixtures: concept and algorithms. Signal Processing 84, 1759–1776 (2004)MATHCrossRefGoogle Scholar
  10. 10.
    Da-Zheng, F., Xian-Da, Z., Zheng, B.: An efficient multistage decomposition approach for independent components. Signal Processing 83, 181–197 (2003)MATHCrossRefGoogle Scholar
  11. 11.
    Ferréol, A., Chevalier, P.: On the behavior of current second and higher order blind source separation methods for cyclostationary sources. IEEE Transactions on Signal Processing 48, 1712–1725 (2000)CrossRefGoogle Scholar
  12. 12.
    Ferréol, A., Chevalier, P., Albera, L.: Second-order blind separation of first- and second-order cyclostationary sources—application to am, fsk, cpfsk, and deterministic sources. IEEE Transactions on Signal Processing 52, 845–861 (2004)CrossRefMathSciNetGoogle Scholar
  13. 13.
    Fukunaga, K.: Introduction to Statistical Pattern Recognition. Academic Press, New York (1990)MATHGoogle Scholar
  14. 14.
    Holland, P.W., Wang, Y.J.: Dependence function for continuous bivariate densities. Communications in Statistics – Theory and Methods A 16, 863–876 (1987)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Holland, P.W., Wang, Y.J.: Regional dependence for continuous bivariate densities. Communications in Statistics – Theory and Methods A 16, 193–206 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Hyvärinen, A.: Blind source separation by nonstationarity of variance: A cumulant-based approach. IEEE Transactions on Neural Networks 12, 1471–1474 (2001)CrossRefGoogle Scholar
  17. 17.
    Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis, 1st edn. Wiley-Interscience, Chichester (2001)CrossRefGoogle Scholar
  18. 18.
    Jafari, M.G., Chambers, J.A.: A novel adaptive algorithm for the blind separation of periodic sources. In: Proceedings of the 2004 IEEE International Joint Conference on Neural Networks, Budapest, Hungary, vol. 1, pp. 25–29. IEEE, Los Alamitos (2004)Google Scholar
  19. 19.
    Jones, M.C.: The local dependence function. Biometrika 83, 899–904 (1996)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Molgedey, L., Schuster, H.G.: Separation of a mixture of independent signals using time delayed correlations. Physical Review Letters 72, 3634–3636 (1994)CrossRefGoogle Scholar
  21. 21.
    Hans-Georg, M., Xin, Y.: On local moments. Journal of Multivariate Analysis 76, 90–109 (2001)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Nuzillard, D., Nuzillard, J.-M.: Second-order blind source separation in the fourier space of data. Signal Processing 83, 627–631 (2003)MATHCrossRefGoogle Scholar
  23. 23.
    Parra, L., Sajda, P.: Blind source separation via generalized eigenvalue decomposition. Journal of Machine Learning Research 4, 1261–1269 (2003)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Dinh-Tuan, P., Jean-François, C.: Blind separation of instantaneous mixtures of nonstationary sources. IEEE Transactions on Signal Processing 49, 1837–1848 (2001)CrossRefMathSciNetGoogle Scholar
  25. 25.
    Pope, K.J., Bogner, R.E.: Blind signal separation: I linear, instantaneous combinations. Digital Signal Processing 6, 5–16 (1996)CrossRefGoogle Scholar
  26. 26.
    Weinstein, E., Feder, M., Oppenheim, A.V.: Multi-channel signal separation by decorrelation. IEEE Transactions on Speech and Audio Processing 1, 405–413 (1993)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Marco Loog
    • 1
  1. 1.The Image Group IT University of CopenhagenCopenhagenDenmark

Personalised recommendations