On the Use of Different Classification Rules in an Editing Task

  • Luisa Micó
  • Francisco Moreno-Seco
  • José Salvador Sánchez
  • José Martinez Sotoca
  • Ramón Alberto Mollineda
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4109)


Editing allows the selection of a representative subset of prototypes among the training sample to improve the performance of a classification task. The Wilson’s editing algorithm was the first proposal and then a great variety of new editing techniques have been proposed based on it. This algorithm consists on the elimination of prototypes in the training set that are misclassified using the k-NN rule. From such editing scheme, a general editing procedure can be straightforward derived, where any classifier beyond k-NN can be used. In this paper, we analyze the behavior of this general editing procedure combined with 3 different neighborhood-based classification rules, including k-NN. The results reveal better performances of the 2 other techniques with respect to k-NN in most of cases.


Pattern recognition classification nearest neighbor prototype selection editing 


  1. 1.
    Bernardo, E., Ho, T.-K.: On classifier domain of competence. In: Proc. 17th. Int. Conf. on Pattern Recognition, Cambridge, UK, pp. 136–139 (2004)Google Scholar
  2. 2.
    Wilson, D.L.: Asymptotic properties of nearest neighbour rules using edited data. IEEE Trans. on Systems, Man and Cybernetics 2, 408–421 (1972)zbMATHCrossRefGoogle Scholar
  3. 3.
    Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Trans. on Information Theory IT-13(1), 21–27 (1967)CrossRefGoogle Scholar
  4. 4.
    Sánchez, J.S., et al.: Analysis of new techniques to obtain quality training sets. Pattern Recognition Letters 24, 1015–1022 (2003)CrossRefGoogle Scholar
  5. 5.
    Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, Chichester (1973)zbMATHGoogle Scholar
  6. 6.
    Chaudhuri, B.B.: A new definition of neighborhood of a point in multi-dimensional space. Pattern Recognition Letters 17, 11–17 (1996)CrossRefGoogle Scholar
  7. 7.
    Dasarathy, B.V.: Nearest Neighbor Norms: NN Pattern Classification techniques. IEEE Computer Society Press, Los Alamos (1991)Google Scholar
  8. 8.
    Devijver, P.A., Kittler, J.: Pattern Recognition: A Statistical Approach. Prentice Hall, Englewood Cliffs (1982)zbMATHGoogle Scholar
  9. 9.
    Moreno-Seco, F., Micó, L., Oncina, J.: Extending fast nearest neighbour search algorithms for approximate k-NN classification. In: Perales, F.J., Campilho, A.C., Pérez, N., Sanfeliu, A. (eds.) IbPRIA 2003. LNCS (LNAI), vol. 2652, pp. 589–597. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  10. 10.
    Micó, L., Oncina, J., Vidal, E.: A new version of the nearest neighbour approximating and eliminating search algorithm (AESA) with linear preprocessing-time and memory requirements. Pattern Recognition Letters 15, 9–17 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luisa Micó
    • 1
  • Francisco Moreno-Seco
    • 1
  • José Salvador Sánchez
    • 2
  • José Martinez Sotoca
    • 2
  • Ramón Alberto Mollineda
    • 2
  1. 1.Dept. Llenguatges i Sistemes InformàticsUniversitat d’AlacantAlacantSpain
  2. 2.Dept. Llenguatges i Sistemes InformàticsUniversitat Jaume ICastelló de la PlanaSpain

Personalised recommendations