Advertisement

Abstract

In this paper we propose a general framework for analysing the diversity of ensembles of word sequence recognition systems. The goal of the framework is to enable the application of any diversity measure developed for standard multi-class classification problems to ensembles of word sequence recognisers. Experiments with several diversity measures are conducted on artificial as well as on real world data and show the effectiveness of the proposed approach.

Keywords

Ground Truth Diversity Measure Ensemble Member Real World Data Text Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Oza, N.C., Polikar, R., Kittler, J., Roli, F. (eds.): MCS 2005. LNCS, vol. 3541. Springer, Heidelberg (2005)MATHGoogle Scholar
  2. 2.
    Huang, T., Suen, C.: Combination of multiple experts for the recognition of unconstrained handwritten numerals. IEEE Transactions on Pattern Analysis and Machine Intelligence 17, 90–94 (1995)CrossRefGoogle Scholar
  3. 3.
    Gader, P., Mohamed, M., Keller, J.: Fusion of handwritten word classifiers. Pattern Recognition Letters 17, 577–584 (1996)CrossRefGoogle Scholar
  4. 4.
    Günter, S., Bunke, H.: Ensembles of classifiers for handwritten word recognition. International Journal on Document Analysis and Recognition 5, 224–232 (2003)CrossRefGoogle Scholar
  5. 5.
    Nakano, Y., Hananoi, T., Miyao, H., Maruyama, M., Maruyama, K.: A document analysis system based on text line matching of multiple OCR outputs. In: Marinai, S., Dengel, A.R. (eds.) DAS 2004. LNCS, vol. 3163, pp. 463–471. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Wilczok, E., Lellmann, W.: Adaptive combination of commercial OCR systems. In: Dengel, A.R., Junker, M., Weisbecker, A. (eds.) Reading and Learning. LNCS, vol. 2956, pp. 124–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Bertolami, R., Bunke, H.: Multiple handwritten text recognition systems derived from specific integration of a language model. In: 8th International Conference on Document Analysis and Recognition, Seoul, Korea, vol. 1, pp. 521–524 (2005)Google Scholar
  8. 8.
    Windeatt, T.: Diversity measures for multiple classifier system analysis and design. Information Fusion 6, 21–36 (2004)CrossRefGoogle Scholar
  9. 9.
    Brown, G., Wyatt, J., Harris, R., Yao, X.: Diversity creation methods: A survey and categorisation. Information Fusion 6, 5–20 (2005)CrossRefGoogle Scholar
  10. 10.
    Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons Inc., Chichester (2004)MATHCrossRefGoogle Scholar
  11. 11.
    Fiscus, J.: A post-processing system to yield reduced word error rates: Recognizer output voting error reduction. In: IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Santa Barbara, pp. 347–352 (1997)Google Scholar
  12. 12.
    Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal of Computational Biology 1, 337–348 (1994)CrossRefGoogle Scholar
  13. 13.
    Sharkey, A., Sharkey, N.: Combining diverse neural networks. The Knowledge Engineering Review 12, 231–247 (1997)CrossRefGoogle Scholar
  14. 14.
    Bertolami, R., Bunke, H.: Ensemble methods for handwritten text line recognition systems. In: International Conference on Systems, Man and Cybernetics, Hawaii, USA, pp. 2334–2339 (2005)Google Scholar
  15. 15.
    Marti, U.V., Bunke, H.: The IAM-database: an English sentence database for offline handwriting recognition. International Journal on Document Analysis and Recognition 5, 39–46 (2002)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Roman Bertolami
    • 1
  • Horst Bunke
    • 1
  1. 1.Institute of Computer Science and Applied MathematicsUniversity of BernBernSwitzerland

Personalised recommendations