Hyperspectral imagery (HSI) unmixing is a process that decomposes pixel spectra into a collection of constituent spectra (endmembers) and their correspondent abundance fractions. Without knowing any knowledge of HSI data, the unmixing problem is transformed into a blind source separation (BSS) problem. Several methods have been proposed to deal with the problem, like independent component analysis (ICA). In this paper, we introduce spatial complexity that applies Markov random field (MRF) to characterize the spatial correlation information of abundance fractions. Compared to previous BSS techniques for HSI unmixing, the major advantage of our approach is that it totally considers HSI spatial structure. Additionally, a proof is given that spatial complexity is suitable for HSI unmixing. Encouraging results have been obtained in terms of unmixing accuracy, suggesting the effectiveness of our approach.


Independent Component Analysis Hyperspectral Image Markov Random Field Independent Component Analysis Blind Source Separation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Manolakis, D., Shaw, G.: Detection algorithms for hyperspectral imaging applications. IEEE Signal Processing Magazine 19(1), 29–43 (2002)CrossRefGoogle Scholar
  2. 2.
    Keshava, N.: A survey of spectral unmixing algorithms. Lincoln Lab Journal 14(1), 55–73 (2003)Google Scholar
  3. 3.
    Yuhas, R.H., Goetz, A.F.H., Boardman, J.W.: Discrimination among semi-arid landscape endmembers using the spectral angle mapper (sam) algorithm. In: Summaries of the 3rd Annual JPL Airborne Geoscience Workshop, vol. 1, pp. 147–149 (1992)Google Scholar
  4. 4.
    Cichocki, A., Amari, S.: Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications. John Wiley & Sons, Chichester (2002)CrossRefGoogle Scholar
  5. 5.
    Bayliss, J.D., Gualtieri, J.A., Cromp, R.F.: Analyzing hyperspectral data with independent component analysis. In: Proceeding of SPIE Applied Image and Pattern Recognition Workshop, vol. 3240, pp. 133–143 (1997)Google Scholar
  6. 6.
    Chiang, S.-S., Chang, C.-I., Smith, J.A., Ginsberg, I.W.: Linear spectral random mixture analysis for hyperspectral imagery. IEEE Transaction on Geoscience and Remote Sensing 40(2), 375–392 (2002)CrossRefGoogle Scholar
  7. 7.
    Nascimento, J.M.P., Dias, J.M.B.: Does independent component analysis play a role in unmixing hyperspectral data? IEEE Transaction on Geoscience and Remote Sensing 43(1), 175–187 (2005)CrossRefGoogle Scholar
  8. 8.
    Stone, J.V.: Independent Component Analysis: A Tutorial Introduction. MIT Press, Cambridge (2004)Google Scholar
  9. 9.
    Du, Q., Chakrarvarty, S.: Unsupervised hyperspectral image classification using blind source separation. In: IEEE International Conference on Acoustics, Speech, and Signal Processing 2003, vol. 3, pp. 437–440 (2003)Google Scholar
  10. 10.
    Deng, H., Clausi, D.A.: Unsupervised image segmentation using a simple mrf model with a new implementation scheme. Pattern Recognition 37(12), 2323–2335 (2004)CrossRefGoogle Scholar
  11. 11.
    Chiang, S.-S., Chang, C.-I., Ginsberg, I.W.: Unsupervised target detection in hyperspectral images using projection pursuit. IEEE Transaction on Geoscience and Remote Sensing 39(7), 1380–1391 (2001)CrossRefGoogle Scholar
  12. 12.
    Robila, S.A., Varshney, P.K.: Target detection in hyperspectral images based on independent component analysis. In: Proceeding of SPIE Automatic Target Recognition, vol. 4726, pp. 173–182 (2002)Google Scholar
  13. 13.
    Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)CrossRefGoogle Scholar
  14. 14.
    The HYDICE HSI dataset, http://www.tec.army.mil/Hypercube/
  15. 15.
    Chang, C.-I., Du, Q.: Estimation of number of spectrally distinct signal sources in hyperspectral imagery. IEEE Transaction on Geoscience and Remote Sensing 42(3), 608–619 (2004)CrossRefGoogle Scholar
  16. 16.
    Stone, J.V., Porrill, J.: Undercomplete independent component analysis for signal separation and dimension reduction. Technical report, Psychology Department, Sheffield University (1998), http://www.shef.ac.uk/~pc1jvs/
  17. 17.
    Xie, S., He, Z., Fu, Y.: A note on stone’s conjecture of blind signal separation. Neural Computation 17(2), 321–330 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sen Jia
    • 1
  • Yuntao Qian
    • 1
  1. 1.College of Computer ScienceZhejiang UniversityHangzhouP.R. China

Personalised recommendations