The aim of this paper is to present a new method to compare modulo histograms. In these histograms, the type of elements are cyclic, for instance, the hue in colour images. The main advantage is that there is an important time-complexity reduction respect the methods presented before. The distance between histograms that we present is defined on a structure called signature, which is a lossless representation of histograms.

We show that the computational cost of our distance is O( \(\mathcal{}z'\) 2 ), being \(\mathcal{}z'\) the number of non-empty bins of the histograms. The computational cost of the algorithms presented in the literature depends on the number of bins of the histograms. In most of the applications, the obtained histograms are sparse, then considering only the non-empty bins makes the time consuming of the comparison drastically decrease.

The distance and algorithms presented in this paper are experimentally validated on the comparison of images obtained from public databases.


Signature Representation Extended Signature Operation Move Left Arrow Ordinal Distance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)Google Scholar
  2. 2.
    Kailath, T.: The divergence and bhattacharyya distance measures in signal selection. IEEE Transactions Community Technol. COM-15(1), 52–60 (1967)CrossRefGoogle Scholar
  3. 3.
    Matusita, K.: Decision rules, based on the distance, for problems of fit, two samples and estimation. Annals Mathematic Statistics 26, 631–640 (1955)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Shore, J.E., Gray, R.M.: Minimum cross-entropy pattern classification and cluster analysis. Transactions on Pattern Analysis and Machine Intelligence 4(1), 11–17 (1982)MATHCrossRefGoogle Scholar
  5. 5.
    Cha, S.-H., Srihari, S.N.: On measuring the distance between histograms. Pattern Recognition 35, 1355–1370 (2002)MATHCrossRefGoogle Scholar
  6. 6.
    Rubner, Y., Tomasi, C., Guibas, L.J.: A Metric for Distributions with Applications to Image Databases. International Journal of Computer Vision 40(2), 99–121 (2000)MATHCrossRefGoogle Scholar
  7. 7.
    Russell, E.J.: Extension of Dantzig’s algorithm to finding an initial near-optimal basis for the transportation problem. Operations Research 17, 187–191 (1969)MATHCrossRefGoogle Scholar
  8. 8.
    Numerical Recipes in C: The Art of Scientific Computing, ISBN 0-521-43108-5Google Scholar
  9. 9.
    Nieh, Y.-P., Zhang, K.Y.J.: A two-dimensional histogram-matchinig method for protein phase refinement and extension. Biological Crystallography 55, 1893–1900 (1999)CrossRefMATHGoogle Scholar
  10. 10.
    Kamarainen, J.-K., Kyrki, V., Llonen, J., Kälviäinen, H.: Improving similarity measures of histograms using smoothing projections. Pattern Recognition Letters 24, 2009–2019 (2003)CrossRefGoogle Scholar
  11. 11.
    Serratosa, F., Sanfeliu, A.: Signatures versus Histograms: Definitions, Distances and Algorithms. Pattern Recognition 39(5), 921–934 (2006)MATHCrossRefGoogle Scholar
  12. 12.
    Serratosa, F., Sanfeliu, A.: A fast distance between histograms. In: Sanfeliu, A., Cortés, M.L. (eds.) CIARP 2005. LNCS, vol. 3773, pp. 1027–1035. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Pi, M., Mandal, M.K., Basu, A.: Image retrieval based on histogram of fractal parameters. IEEE Transactions on Multimedia 7(4), 597–605 (2005)CrossRefGoogle Scholar
  14. 14.
    Serratosa, F., Alquézar y, R., Sanfeliu, A.: Function-Described Graphs for modeling objects represented by attributed graphs. Pattern Recognition 36(3), 781–798 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Francesc Serratosa
    • 1
  • Alberto Sanfeliu
    • 2
  1. 1.Dept. d’Enginyeria Informàtica i MatemàtiquesUniversitat Rovira I VirgiliSpain
  2. 2.Institut de Robòtica i Informàtica IndustrialUniversitat Politècnica de CatalunyaSpain

Personalised recommendations