Abstract

Statistical inference of sensor-based measurements is intensively studied in pattern recognition. It is usually based on feature representations of the objects to be recognized. Such representations, however, neglect the object structure. Structural pattern recognition, on the contrary, focusses on encoding the object structure. As general procedures are still weakly developed, such object descriptions are often application dependent. This hampers the usage of a general learning approach.

This paper aims to summarize the problems and possibilities of general structural inference approaches for the family of sensor-based measurements: images, spectra and time signals, assuming a continuity between measurement samples. In particular it will be discussed when probabilistic assumptions are needed, leading to a statistically-based inference of the structure, and when a pure, non-probabilistic structural inference scheme may be possible.

Keywords

Feature Representation Dissimilarity Measure Object Structure Proximity Measure Structural Risk Minimization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Sayre, K.: Recognition, a study in the philosophy of artificial intelligence. University of Notre Dame Press (1965)Google Scholar
  2. 2.
    Watanabe, S.: Pattern Recogn. Human and Mechanical. Academic Press, London (1974)Google Scholar
  3. 3.
    Fu, K.: Syntactic Pattern Recognition and Applications. Prentice-Hall, Englewood Cliffs (1982)MATHGoogle Scholar
  4. 4.
    Fukunaga, K.: Introduction to Statistical Pattern Recogn. Academic Press, London (1990)Google Scholar
  5. 5.
    Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley & Sons, Chichester (2001)MATHGoogle Scholar
  6. 6.
    Webb, A.: Statistical Pattern Recognition. John Wiley & Sons, Ltd, Chichester (2002)MATHCrossRefGoogle Scholar
  7. 7.
    Jain, A., Duin, R.P.W., Mao, J.: Statistical pattern recognition: A review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)CrossRefGoogle Scholar
  8. 8.
    Bunke, H., Günter, S., Jiang, X.: Towards bridging the gap between statistical and structural pattern recognition: Two new concepts in graph matching. In: International Conference on Advances in Pattern Recognition, pp. 1–11 (2001)Google Scholar
  9. 9.
    Fu, K.: A step towards unification of syntactic and statistical pattern recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 8 (1986)Google Scholar
  10. 10.
    Goldfarb, L.: A new approach to pattern recognition. In: Kanal, L., Rosenfeld, A. (eds.) Progress in Pattern Recognition, vol. 2, pp. 241–402. Elsevier Science Publishers BV, Amsterdam (1985)Google Scholar
  11. 11.
    Goldfarb, L., Gay, D.: What is a structural representation? Fifth variation. Technical Report TR05-175, University of New Brunswick, Fredericton, Canada (2005)Google Scholar
  12. 12.
    Goldfarb, L.: What is distance and why do we need the metric model for pattern learning? Pattern Recognition 25(4), 431–438 (1992)CrossRefGoogle Scholar
  13. 13.
    Goldfarb, L., Golubitsky, O.: What is a structural measurement process? Technical Report TR01-147, University of New Brunswick, Fredericton, Canada (2001)Google Scholar
  14. 14.
    Gutkin, A., Gya, D., Goldfarb, L., Webster, M.: On the articulatory representation of speech within the evolving transformation system formalism. In: Goldfarb, L. (ed.) Pattern representation and the future of pattern recognition, ICPR 2004 Workshop Proceedings, Cambridge, United Kingdom, pp. 57–76 (2004)Google Scholar
  15. 15.
    Pękalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific, Singapore (2005)MATHCrossRefGoogle Scholar
  16. 16.
    Pękalska, E., Duin, R.P.W.: Learning with general proximity measures. In: Pattern Recognition in Information Systems, vol. 6 (2006)Google Scholar
  17. 17.
    Duin, R.P.W., Pękalska, E.: Open issues in pattern recognition. In: Computer Recognition Systems, pp. 27–42. Springer, Berlin (2005)CrossRefGoogle Scholar
  18. 18.
    Duin, R.P.W., Pękalska, E.: The science of pattern recognition. Achievements and perspectives (submitted, 2006)Google Scholar
  19. 19.
    Dawid, A., Stone, M., Zidek, J.: Marginalization paradoxes in Bayesian and structural inference. J. Royal Stat. Soc., B 35, 180–223 (1973)MathSciNetGoogle Scholar
  20. 20.
    Vapnik, V.: Estimation of Dependences based on Empirical Data, 2nd edn. Springer, Heidelberg (2006)MATHGoogle Scholar
  21. 21.
    Jain, A.K., Chandrasekaran, B.: Dimensionality and sample size considerations in pattern recognition practice. In: Krishnaiah, P.R., Kanal, L.N. (eds.) Handbook of Statistics, vol. 2, pp. 835–855. North-Holland, Amsterdam (1987)Google Scholar
  22. 22.
    Wolpert, D.: The Mathematics of Generalization. Addison-Wesley, Reading (1995)MATHGoogle Scholar
  23. 23.
    Duin, R.P.W., Roli, F., de Ridder, D.: A note on core research issues for statistical pattern recognition. Pattern Recognition Letters 23(4), 493–499 (2002)MATHCrossRefGoogle Scholar
  24. 24.
    Duin, R.P.W., Pękalska, E.: Domain-based classification. Technical report, TU Delft (2005), http://ict.ewi.tudelft.nl/~duin/papers/Domain_class_05.pdf
  25. 25.
    Vapnik, V.: Statistical Learning Theory. John Wiley & Sons, Inc., Chichester (1998)MATHGoogle Scholar
  26. 26.
    Cristianini, N., Shawe-Taylor, J.: Support Vector Machines and other kernel-based learning methods. Cambridge University Press, UK (2000)Google Scholar
  27. 27.
    Pękalska, E., Paclík, P., Duin, R.P.W.: A Generalized Kernel Approach to Dissim. Based Classification. Journal of Machine Learning Research 2(2), 175–211 (2002)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Pękalska, E., Duin, R.P.W., Paclík, P.: Prototype selection for dissimilarity-based classifiers. Pattern Recognition 39(2), 189–208 (2006)MATHCrossRefGoogle Scholar
  29. 29.
    Paclík, P., Novovicova, J., Duin, R.P.W.: Building road sign classifiers using a trainable similarity measure. Journal of Intelligent Transportations Systems (2006)Google Scholar
  30. 30.
    Paclík, P., Novovicova, J., Duin, R.P.W.: A trainable similarity measure for image classification. In: 17th Int. Conf. on Pattern Recognition (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Robert P. W. Duin
    • 1
  • Elżbieta Pękalska
    • 1
    • 2
  1. 1.ICT group, Faculty of Electr. Eng., Mathematics and Computer ScienceDelft University of TechnologyThe Netherlands
  2. 2.School of Computer ScienceUniversity of ManchesterUnited Kingdom

Personalised recommendations