Hierarchical Video Summarization Based on Video Structure and Highlight

  • Yuliang Geng
  • De Xu
  • Songhe Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4109)


Video summarization is a significant scheme to organize massive video data, and implement a meaningful rapid navigation of video. In this paper, we propose a hierarchical video summarization approach based on video structure and highlight. We extract video structure unit, and measure the unit (frame, shot and scene) importance rank based on visual and audio attention models. According to the unit importance rank, the skim ratio and key frame ratio are assigned to the different video units. Thus we achieve a hierarchical video summary. Experimental results show the excellent performance of the approach.


Video Summarization Video Summary Importance Rank Content Compactness Audio Frame 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Rui, Y., Huang, T.S., Mehrotra, S.: Constructing Table-of-Content for Videos. ACM Multimedia Systems Journal, Special Issue Multimedia Systems on Video Libraries 7(5), 359–368 (1999)Google Scholar
  2. 2.
    Hasebea, S., Mustafa, M.S.: Constructing Storyboards Based on Hierarchical Clustering Analysis. In: Proceedings of Visual Communications and Image Processing, SPIE, vol. 5960, pp. 437–445 (2005)Google Scholar
  3. 3.
    Ma, Y.F., Zhang, H.J.: Video Snapshot: A Bird View of Video Sequence. In: Proceedings of the 11th International Multimedia Modelling Conference, pp. 94–101 (2005)Google Scholar
  4. 4.
    Tjondronegoro, D.W., Chen, Y.P.P., Pham, B.: Classification of Self-Consumable Highlights for Soccer Video Summaries. In: Proceedings of IEEE ICME, vol. 1, pp. 579–582 (2004)Google Scholar
  5. 5.
    Noboru, B., Yoshihiko, K., et al.: Personalized Abstraction of Broadcasted American Football Video by Highlight Selection. IEEE Transactions on Multimedia 6(4), 575–586 (2004)CrossRefGoogle Scholar
  6. 6.
    Rapantzikos, K., Tsapatsoulis, N., Avrithis, Y.: Spatiotemporal Visual Attention Architecture for Video Analysis. In: Proceedings of Multimedia Signal Processing, pp. 83–86 (2004)Google Scholar
  7. 7.
    Lee, S.H., Yeh, C.H., Kuo, C.C.J.: Video Skimming Based on Story Units via General Tempo Analysis. In: Proceedings of IEEE ICME, vol. 2, pp. 1099–1102 (2004)Google Scholar
  8. 8.
    Ma, Y.F., Lu, L., Zhang, H.J., Li, M.J.: A User Attention Model for Video Summarization. In: Proceedings of ACM Multimedia, pp. 533–542 (2002)Google Scholar
  9. 9.
    Lu, S., King, I., Michael, R.L.: Video Summarization by Video Structure Analysis and Graph Optimization. In: Proceedings of IEEE ICME, vol. 3, pp. 1959–1962 (2004)Google Scholar
  10. 10.
    Geng, Y.L., Xu, D.: A Unified Framework for Shot Boundary Detection. Journal of Image and Graphics (Chinese) 10(5), 650–655 (2005)Google Scholar
  11. 11.
    Geng, Y.L., Xu, D., Wu, A.M.: Effective Video Scene Detection Approach Based on Cinematic Rules. In: Khosla, R., Howlett, R.J., Jain, L.C. (eds.) KES 2005. LNCS (LNAI), vol. 3682, pp. 1197–1204. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Ohm, J.R.: Multimedia Communication Technology Representation, Transmission and Identification of Multimedia Signals. Springer, Heidelberg (2004)MATHGoogle Scholar
  13. 13.
    Lu, L., Jiang, H., Zhang, H.J.: A Robust Audio Classification and Segmentation Method. In: Proceedings of ACM Multimedia, vol. 9, pp. 203–211 (2001)Google Scholar
  14. 14.
    Zhu, X.Q., Xue, X.Y.: Qualitative Camera Motion Classification for Content-Based Video Indexing. In: Chen, Y.-C., Chang, L.-W., Hsu, C.-T. (eds.) PCM 2002. LNCS, vol. 2532, pp. 1128–1136. Springer, Heidelberg (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuliang Geng
    • 1
  • De Xu
    • 1
  • Songhe Feng
    • 1
  1. 1.Institute of Computer Science and TechnologyBeijing Jiaotong UniversityBeijingChina

Personalised recommendations