Advertisement

Extended Resolution Proofs for Symbolic SAT Solving with Quantification

  • Toni Jussila
  • Carsten Sinz
  • Armin Biere
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4121)

Abstract

Symbolic SAT solving is an approach where the clauses of a CNF formula are represented using BDDs. These BDDs are then conjoined, and finally checking satisfiability is reduced to the question of whether the final BDD is identical to false. We present a method combining symbolic SAT solving with BDD quantification (variable elimination) and generation of extended resolution proofs. Proofs are fundamental to many applications, and our results allow the use of BDDs instead of—or in combination with—established proof generation techniques like clause learning. We have implemented a symbolic SAT solver with variable elimination that produces extended resolution proofs. We present details of our implementation, called EBDDRES, which is an extension of the system presented in [1], and also report on experimental results.

Keywords

Model Check Boolean Function Binary Decision Diagram Variable Elimination Extension Rule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sinz, C., Biere, A.: Extended resolution proofs for conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds.) CSR 2006. LNCS, vol. 3967, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  2. 2.
    Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7 (1960)Google Scholar
  3. 3.
    Marques–Silva, J.P., Sakallah, K.A.: GRASP — a new search algorithm for satisfiability. In: Proc. ICCAD 1996 (1996)Google Scholar
  4. 4.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proc. DAC 2001 (2001)Google Scholar
  5. 5.
    Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proc. DATE 2002 (2002)Google Scholar
  6. 6.
    Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, Springer, Heidelberg (1999)CrossRefGoogle Scholar
  8. 8.
    Velev, M., Bryant, R.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. J. Symb. Comput. 35(2) (2003)Google Scholar
  9. 9.
    Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging overconstrained declarative models using unsatisfiable cores. In: Proc. ASE 2003 (2003)Google Scholar
  10. 10.
    Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1) (2003)Google Scholar
  11. 11.
    McMillan, K., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    McMillan, K.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Proc. DATE 2003 (2003)Google Scholar
  14. 14.
    Motter, D., Markov, I.: A compressed breath-first search for satisfiability. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M., Fleet, W.: SBSAT: a state–based, BDD–based satisfiability solver. In: Proc. SAT 2003 (2003)Google Scholar
  16. 16.
    Damiano, R., Kukula, J.: Checking satisfiability of a conjunction of BDDs. In: DAC 2003 (2003)Google Scholar
  17. 17.
    Huang, J., Darwiche, A.: Toward good elimination orders for symbolic SAT solving. In: Proc. ICTAI 2004,Google Scholar
  18. 18.
    Pan, G., Vardi, M.: Search vs. symbolic techniques in satisfiability solving. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Jin, H.-S., Awedh, M., Somenzi, F.: CirCUs: A hybrid satisfiability solver. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, Springer, Heidelberg (2005)CrossRefGoogle Scholar
  20. 20.
    Uribe, T.E., Stickel, M.E.: Ordered binary decision diagrams and the Davis-Putnam procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, Springer, Heidelberg (1994)CrossRefGoogle Scholar
  21. 21.
    Rish, I., Dechter, R.: Resolution versus search: Two strategies for SAT. J. Automated Reasoning 24(1–2) (2000)Google Scholar
  22. 22.
    Groote, J.F., Zantema, H.: Resolution and binary decision diagrams cannot simulate each other polynomially. Discrete Applied Mathematics 130(2) (2003)Google Scholar
  23. 23.
    Urquhart, A.: Hard examples for resolution. J. ACM 34(1) (1987)Google Scholar
  24. 24.
    Robinson, J.A.: A machine-oriented logic based on the resolution principle. JACM 12 (1965)Google Scholar
  25. 25.
    Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic (1970)Google Scholar
  26. 26.
    Urquhart, A.: The complexity of propositional proofs. Bulletin of the EATCS 64 (1998)Google Scholar
  27. 27.
    Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Comp. 35(8) (1986)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Toni Jussila
    • 1
  • Carsten Sinz
    • 1
  • Armin Biere
    • 1
  1. 1.Institute for Formal Models and VerificationJohannes Kepler University LinzAustria

Personalised recommendations