Advertisement

A Scalable Algorithm for Minimal Unsatisfiable Core Extraction

  • Nachum Dershowitz
  • Ziyad Hanna
  • Alexander Nadel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4121)

Abstract

We propose a new algorithm for minimal unsatisfiable core extraction, based on a deeper exploration of resolution-refutation properties. We provide experimental results on formal verification benchmarks confirming that our algorithm finds smaller cores than suboptimal algorithms; and that it runs faster than those algorithms that guarantee minimality of the core. (A more complete version of this paper may be found at arXiv.org/pdf/cs.LO/0605085.)

Keywords

Model Check Conjunctive Normal Form Scalable Algorithm Bound Model Check Hard Instance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking without BDDs. In: Cleaveland, W.R. (ed.) ETAPS 1999 and TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Bruni, R.: Approximating minimal unsatisfiable subformulae by means of adaptive core search. Discrete Applied Mathematics 130(2), 85–100 (2003)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Fu, Z., Mahajan, Y., Malik, S.: ZChaff2004: An efficient SAT solver. In: H. Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 360–375. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Proc. Design, Automation and Test in Europe Conference and Exhibition (DATE 2003), pp. 10886–10891 (2003)Google Scholar
  5. 5.
    Huang, J.: MUP: A minimal unsatisfiability prover. In: Proc. Tenth Asia and South Pacific Design Automation Conference (ASP-DAC 2005), pp. 432–437 (2005)Google Scholar
  6. 6.
    Marques-Silva, J.P., Sakallah, K.A.: GRASP: A search algorithm for propositional satisfiability. IEEE Transactions on Computers 48(5), 506–521 (1999)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Oh, Y., Mneimneh, M.N., Andraus, Z.S., Sakallah, K.A., Markov, I.L.: AMUSE: A minimally-unsatisfiable subformula extractor. In: Proc. 41st Design Automation Conference (DAC 2004), pp. 518–523 (2004)Google Scholar
  8. 8.
    Velev, M.N., Bryant, R.E.: Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. In: Proc. 38th Design Automation Conference (DAC 2001), pp. 226–231 (2001)Google Scholar
  9. 9.
    Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nachum Dershowitz
    • 1
  • Ziyad Hanna
    • 2
  • Alexander Nadel
    • 1
    • 2
  1. 1.School of Computer ScienceTel Aviv UniversityRamat AvivIsrael
  2. 2.Design Technology Solutions GroupIntel CorporationHaifaIsrael

Personalised recommendations