Advertisement

Categorisation of Clauses in Conjunctive Normal Forms: Minimally Unsatisfiable Sub-clause-sets and the Lean Kernel

  • Oliver Kullmann
  • Inês Lynce
  • João Marques-Silva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4121)

Abstract

Finding out that a SAT problem instance F is unsatisfiable is not enough for applications, where good reasons are needed for explaining the inconsistency (so that for example the inconsistency may be repaired). Previous attempts of finding such good reasons focused on finding some minimally unsatisfiable sub-clause-set F’ of F, which in general suffers from the non-uniqueness of F’ (and thus it will only find some reason, albeit there might be others).

In our work, we develop a fuller approach, enabling a more fine-grained analysis of necessity and redundancy of clauses, supported by meaningful semantical and proof-theoretical characterisations. We combine known techniques for searching and enumerating minimally unsatisfiable sub-clause-sets with (full) autarky search. To illustrate our techniques, we give a detailed analysis of well-known industrial problem instances.

Keywords

Model Check Problem Instance User Requirement Conjunctive Normal Form Satisfying Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aharoni, R., Linial, N.: Minimal non-two-colorable hypergraphs and minimal unsatisfiable formulas. Journal of Combinatorial Theory, A 43, 196–204 (1986)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Berge, C.: Hypergraphs: Combinatorics of Finite Sets. North-Holland Mathematical Library, vol. 45. North-Holland, Amsterdam (1989)MATHCrossRefGoogle Scholar
  3. 3.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Highly Dependable Software. In: Advances in Computers, Chapter Bounded model checking, vol. 58, Elsevier, Amsterdam (2003)Google Scholar
  4. 4.
    Bruni, R.: On exact selection of minimally unsatisfiable subformulae. Annals for Mathematics and Artificial Intelligence 43, 35–50 (2005)MATHMathSciNetGoogle Scholar
  5. 5.
    Bruni, R., Sassano, A.: Restoring satisfiability or maintaining unsatisfiability by finding small unsatisfiable subformulae. In: LICS Workshop SAT 2001. ENDM, vol. 9 (2001)Google Scholar
  6. 6.
    Büning, H.K.: On subclasses of minimal unsatisfiable formulas. Discrete Applied Mathematics 107, 83–98 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Chauhan, P., Clarke, E., Kukula, J., Sapra, S., Veith, H., Wang, D.: Automated abstraction refinement for model checking large state spaces using SAT based conflict analysis. In: International Conference on Formal Methods in Computer-Aided Design (2002)Google Scholar
  8. 8.
    Cook, S.A.: A short proof of the pigeonhole principle using extended resolution. In: SIGACT News, October-December 1976, pp. 28–32 (1976)Google Scholar
  9. 9.
    Davydov, G., Davydova, I., Büning, H.K.: An efficient algorithm for the minimal unsatisfiability problem for a subclass of CNF. Annals of Mathematics and Artificial Intelligence 23, 229–245 (1998)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    de la Banda, M.G., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable sub-sets. In: International Conference on Principles and Practice of Declarative Programming (2003)Google Scholar
  11. 11.
    Goldberg, E., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Design, Automation and Test in Europe Conference, March 2003, pp. 10886–10891 (2003)Google Scholar
  12. 12.
    Kullmann, O.: An application of matroid theory to the SAT problem. In: Fifteenth Annual IEEE Conference on Computational Complexity, pp. 116–124 (2003)Google Scholar
  13. 13.
    Kullmann, O.: On the use of autarkies for satisfiability decision. In: LICS Workshop SAT 2001. ENDM, vol. 9 (2001)Google Scholar
  14. 14.
    Kullmann, O.: New methods for 3-SAT decision and worst-case analysis. Theoretical Computer Science 223(1-2), 1–72 (1999)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kullmann, O.: On a generalization of extended resolution. Discrete Applied Mathematics 96-97(1-3), 149–176 (1999)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Kullmann, O.: Investigations on autark assignments. Discrete Applied Mathematics 107, 99–137 (2000)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Kullmann, O.: Lean clause-sets: Generalizations of minimally unsatisfiable clause-sets. Discrete Applied Mathematics 130, 209–249 (2003)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Kullmann, O.: Upper and lower bounds on the complexity of generalised resolution and generalised constraint satisfaction problems. Annals of Mathematics and Artificial Intelligence 40(3-4), 303–352 (2004)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Kullmann, O.: Modelling the behaviour of a DLL SAT solver on random formulas (preparation, 2006)Google Scholar
  20. 20.
    Liffiton, M.H., Sakallah, K.A.: On finding all minimally unsatisfiable subformulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 173–186. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Mazure, B., Sais, L., Grégoire, E.: Boosting complete techniques thanks to local search methods. Annals of Mathematics and Artificial Intelligence 22(3-4), 319–331 (1998)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, Springer, Heidelberg (2003)CrossRefGoogle Scholar
  23. 23.
    Mneimneh, M.N., Lynce, I., Andraus, Z.S., Sakallah, K.A., Marques-Silva, J.P.: A branch and bound algorithm for extracting smallest minimal unsatisfiable formulas. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 467–474. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Nam, G.-J., Sakallah, K.A., Rutenbar, R.A.: Satisfiability-based layout revisited: Detailed routing of complex FPGAs via search-based boolean SAT. In: International Symposium on Field-Programmable Gate Arrays (February 1999)Google Scholar
  25. 25.
    Papadimitriou, C.H., Yannakakis, M.: The complexity of facets (and some facets of complexity). Journal on Computer and System Sciences 28, 244–259 (1984)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Shaohan, M., Dongmin, L.: A polynomial-time algorithm for reducing the number of variables in MAX SAT problem. Science in China (Series E) 40(3), 301–311 (1997)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. Artificial Intelligence for Engineering Design, Analysis and Manufacturing 17(1), 75–97 (2003)CrossRefGoogle Scholar
  28. 28.
    Zhang, L., Malik, S.: Extracting small unsatisfiable cores from unsatisfiable Boolean formula. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 239–249. Springer, Heidelberg (2004)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oliver Kullmann
    • 1
  • Inês Lynce
    • 2
  • João Marques-Silva
    • 3
  1. 1.Computer Science DepartmentUniversity of Wales SwanseaSwanseaUK
  2. 2.Departamento de Engenharia Informática, Instituto Superior Técnico / INESC-IDUniversidade Técnica de Lisboa 
  3. 3.School of Electronics and Computer ScienceUniversity of SouthamptonSouthamptonUK

Personalised recommendations