Solving #SAT Using Vertex Covers

  • Naomi Nishimura
  • Prabhakar Ragde
  • Stefan Szeider
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4121)


We propose an exact algorithm for counting the models of propositional formulas in conjunctive normal form (CNF). Our algorithm is based on the detection of strong backdoor sets of bounded size; each instantiation of the variables of a strong backdoor set puts the given formula into a class of formulas for which models can be counted in polynomial time. For the backdoor set detection we utilize an efficient vertex cover algorithm applied to a certain “obstruction graph” that we associate with the given formula. This approach gives rise to a new hardness index for formulas, the clustering-width. Our algorithm runs in uniform polynomial time on formulas with bounded clustering-width.

It is known that the number of models of formulas with bounded clique-width, bounded treewidth, or bounded branchwidth can be computed in polynomial time; these graph parameters are applied to formulas via certain (hyper)graphs associated with formulas. We show that clustering-width and the other parameters mentioned are incomparable: there are formulas with bounded clustering-width and arbitrarily large clique-width, treewidth, and branchwidth. Conversely, there are formulas with arbitrarily large clustering-width and bounded clique-width, treewidth, and branchwidth.


Polynomial Time Base Class Vertex Cover Conjunctive Normal Form Truth Assignment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bacchus, F., Dalmao, S., Pitassi, T.: Algorithms and complexity results for #SAT and Bayesian Inference. In: 44th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2003), pp. 340–351 (2003)Google Scholar
  2. 2.
    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoret. Comput. Sci. 209(1-2), 1–45 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Chen, J., Kanj, I.A., Xia, G.: Simplicity is beauty: Improved upper bounds for vertex cover. Technical Report TR05-008, DePaul University, Chicago IL (2005)Google Scholar
  4. 4.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Courcelle, B., Makowsky, J.A., Rotics, U.: On the fixed parameter complexity of graph enumeration problems definable in monadic second-order logic. Discr. Appl. Math. 108(1-2), 23–52 (2001)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discr. Appl. Math. 101(1-3), 77–114 (2000)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. In: Monographs in Computer Science, Springer, Heidelberg (1999)Google Scholar
  8. 8.
    Fischer, E., Makowsky, J.A., Ravve, E.R.: Counting truth assignments of formulas of bounded tree-width or clique-width. Discr. Appl. Math. (to appear)Google Scholar
  9. 9.
    Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33(4), 892–922 (2004)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Golumbic, M.C., Rotics, U.: On the clique-width of some perfect graph classes. WG 1999 11(3), 423–443 (2000), Selected papers from the Workshop on Graph-Theoretical Aspects of Computer Science (WG 1999), Part 1 (Ascona)Google Scholar
  11. 11.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: fixed-parameter algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Gottlob, G., Scarcello, F., Sideri, M.: Fixed-parameter complexity in AI and nonmonotonic reasoning. Artificial Intelligence 138(1-2), 55–86 (2002)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Gottlob, G., Szeider, S.: Fixed-parameter algorithms for artificial intelligence, constraint satisfaction, and database problems (April 2006) (submitted)Google Scholar
  14. 14.
    Interian, Y.: Backdoor sets for random 3-SAT. In: Informal Proceedings of SAT 2003, pp. 231–238 (2003)Google Scholar
  15. 15.
    Iwama, K.: CNF-satisfiability test by counting and polynomial average time. SIAM J. Comput. 18(2), 385–391 (1989)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfiability. In: Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Innovative Applications of Artificial Intelligence Conference (AAAI 2005), pp. 1368–1373 (2005)Google Scholar
  17. 17.
    Kleine Büning, H., Zhao, X.: Satisfiable formulas closed under replacement. In: Proceedings for the Workshop on Theory and Applications of Satisfiability. Electronic Notes in Discrete Mathematics, vol. 9, Elsevier Science Publishers, North-Holland (2001)Google Scholar
  18. 18.
    Lynce, I., Marques-Silva, J.P.: Hidden structure in unsatisfiable random 3-SAT: An empirical study. In: 16th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2004), pp. 246–251. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  19. 19.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. In: Oxford Lecture Series in Mathematics and Its Applications, Oxford University Press, Oxford (2006)Google Scholar
  20. 20.
    Nishimura, N., Ragde, P., Szeider, S.: Detecting backdoor sets with respect to Horn and binary clauses. In: Informal Proceedings of SAT 2004, pp. 96–103 (2004)Google Scholar
  21. 21.
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Combin. Theory, Ser. B (to appear)Google Scholar
  22. 22.
    Robertson, N., Seymour, P.D.: Graph minors. X. Obstructions to tree-decomposition. J. Combin. Theory Ser. B 52(2), 153–190 (1991)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Roth, D.: On the hardness of approximate reasoning. Artificial Intelligence 82(1-2), 273–302 (1996)CrossRefMathSciNetGoogle Scholar
  24. 24.
    Ruan, Y., Kautz, H.A., Horvitz, E.: The backdoor key: A path to understanding problem hardness. In: Proceedings of the 19th National Conference on Artificial Intelligence, 16th Conference on Innovative Applications of Artificial Intelligence, pp. 124–130. AAAI Press / The MIT Press (2004)Google Scholar
  25. 25.
    Szeider, S.: On fixed-parameter tractable parameterizations of SAT. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 188–202. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  26. 26.
    Szeider, S.: Backdoor sets for DLL subsolvers. Journal of Automated Reasoning (in press, 2005)Google Scholar
  27. 27.
    Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci. 8(2), 189–201 (1979)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Williams, R., Gomes, C., Selman, B.: On the connections between backdoors, restarts, and heavy-tailedness in combinatorial search. In: Informal Proceedings of SAT 2003, pp. 222–230 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Naomi Nishimura
    • 1
  • Prabhakar Ragde
    • 1
  • Stefan Szeider
    • 2
  1. 1.School of Computer ScienceUniversity of WaterlooWaterlooCanada
  2. 2.Department of Computer ScienceDurham UniversityDurhamUnited Kingdom

Personalised recommendations