Skip to main content

SAT in Bioinformatics: Making the Case with Haplotype Inference

  • Conference paper
Theory and Applications of Satisfiability Testing - SAT 2006 (SAT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4121))

Abstract

Mutation in DNA is the principal cause for differences among human beings, and Single Nucleotide Polymorphisms (SNPs) are the most common mutations. Hence, a fundamental task is to complete a map of haplotypes (which identify SNPs) in the human population. Associated with this effort, a key computational problem is the inference of haplotype data from genotype data, since in practice genotype data rather than haplotype data is usually obtained. Recent work has shown that a SAT-based approach is by far the most efficient solution to the problem of haplotype inference by pure parsimony (HIPP), being several orders of magnitude faster than existing integer linear programming and branch and bound solutions. This paper proposes a number of key optimizations to the the original SAT-based model. The new version of the model can be orders of magnitude faster than the original SAT-based HIPP model, particularly on biological test data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brown, D., Harrower, I.: A new integer programming formulation for the pure parsimony problem in haplotype analysis. In: Jonassen, I., Kim, J. (eds.) WABI 2004. LNCS (LNBI), vol. 3240, Springer, Heidelberg (2004)

    Google Scholar 

  2. Brown, D., Harrower, I.: Integer programming approaches to haplotype inference by pure parsimony. IEEE/ACM Transactions on Computational Biology and Bioinformatics 3(2), 141–154 (2006)

    Article  Google Scholar 

  3. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Global constraints for lexicographic orderings. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, Springer, Heidelberg (2002)

    Google Scholar 

  5. Gusfield, D.: Haplotype inference by pure parsimony. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Hudson, R.R.: Generating samples under a wright-fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002)

    Article  Google Scholar 

  7. Lancia, G., Pinotti, C.M., Rizzi, R.: Haplotyping populations by pure parsimony: complexity of exact and approximation algorithms. INFORMS Journal on Computing 16(4), 348–359 (2004)

    Article  MathSciNet  Google Scholar 

  8. Lynce, I., Marques-Silva, J.: Efficient haplotype inference with Boolean satisfiability. In: National Conference on Artificial Intelligence (AAAI) (July 2006)

    Google Scholar 

  9. Rieder, M.J., Taylor, S.T., Clark, A.G., Nickerson, D.A.: Sequence variation in the human angiotensin converting enzyme. Nature Genetics 22, 481–494 (2001)

    Google Scholar 

  10. Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformatics 19(14), 1773–1780 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lynce, I., Marques-Silva, J. (2006). SAT in Bioinformatics: Making the Case with Haplotype Inference. In: Biere, A., Gomes, C.P. (eds) Theory and Applications of Satisfiability Testing - SAT 2006. SAT 2006. Lecture Notes in Computer Science, vol 4121. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814948_16

Download citation

  • DOI: https://doi.org/10.1007/11814948_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37206-6

  • Online ISBN: 978-3-540-37207-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics