Using the TPTP Language for Writing Derivations and Finite Interpretations

  • Geoff Sutcliffe
  • Stephan Schulz
  • Koen Claessen
  • Allen Van Gelder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)


One of the keys to the success of the TPTP and related projects is their consistent use of the TPTP language. The ability of the TPTP language to express solutions as well as problems, in conjunction with the simplicity of the syntax, sets it apart from other languages used in ATP. This paper provides a complete definition of the TPTP language, and describes how the language should be used to write derivations and finite interpretations.


Inference Rule Distinct Object Domain Element Inference Step System Predicate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Benzmüller, C., Brown, C.: A Structured Set of Higher-Order Problems. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 66–81. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Caprotti, O., Carlisle, D.: OpenMath and MathML: Semantic Mark Up for Mathematics. ACM Crossroads 6(2) (1999)Google Scholar
  3. 3.
    Claessen, K., Sorensson, N.: New Techniques that Improve MACE-style Finite Model Finding. In: Baumgartner, P., Fermueller, C. (eds.) Proceedings of the CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications (2003)Google Scholar
  4. 4.
    Denney, E., Fischer, B., Schumann, J.: Using Automated Theorem Provers to Certify Auto-generated Aerospace Software. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 198–212. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Denzinger, J., Schulz, S.: Recording and Analysing Knowledge-Based Distributed Deduction Processes. Journal of Symbolic Computation 21, 523–541 (1996)MATHCrossRefGoogle Scholar
  6. 6.
    Gordon, M., Melham, T.: Introduction to HOL, a Theorem Proving Environment for Higher Order Logic. Cambridge University Press, Cambridge (1993)MATHGoogle Scholar
  7. 7.
    Hähnle, R., Kerber, M., Weidenbach, C.: Common Syntax of the DFG-Schwerpunktprogramm Deduction. Technical Report TR 10/96, Fakultät für Informatik, Universät Karlsruhe, Karlsruhe, Germany (1996)Google Scholar
  8. 8.
    Hurd, J., Arthan, R.: OpenTheory,
  9. 9.
    Kohlhase, M.: OMDOC: Towards an Internet Standard for the Administration, Distribution, and Teaching of Mathematical Knowledge. In: Campbell, J.A., Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930, pp. 32–52. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    McCune, W., Shumsky-Matlin, O.: Ivy: A Preprocessor and Proof Checker for First-Order Logic. In: Kaufmann, M., Manolios, P., Strother Moore, J. (eds.) Computer-Aided Reasoning: ACL2 Case Studies. Advances in Formal Methods, vol. 4, pp. 265–282. Kluwer Academic Publishers, Dordrecht (2000)Google Scholar
  11. 11.
    McCune, W.W.: Otter 3.3 Reference Manual. Technical Report ANL/MSC-TM-263, Argonne National Laboratory, Argonne, USA (2003)Google Scholar
  12. 12.
    Schulz, S.: E: A Brainiac Theorem Prover. AI Communications 15(2-3), 111–126 (2002)MATHGoogle Scholar
  13. 13.
    Schulz, S.: LOP-Syntax for Theorem Proving Applications,
  14. 14.
    Schulz, S., Bonacina, M.P.: On Handling Distinct Objects in the Superposition Calculus. In: Konev, B., Schulz, S. (eds.) Proceedings of the 5th International Workshop on the Implementation of Logics, pp. 66–77 (2005)Google Scholar
  15. 15.
    Steel, G.: Visualising First-Order Proof Search. In: Aspinall, C., Lüth, D. (eds.) Proceedings of User Interfaces for Theorem Provers 2005, pp. 179–189 (2005)Google Scholar
  16. 16.
    Sutcliffe, G.: SystemOnTPTP. In: McAllester, D. (ed.) CADE 2000. LNCS, vol. 1831, pp. 406–410. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  17. 17.
    Sutcliffe, G.: Semantic Derivation Verification. International Journal on Artificial Intelligence Tools ( page to appear, 2006)Google Scholar
  18. 18.
    Sutcliffe, G.: The TSTP Solution Library,
  19. 19.
    Sutcliffe, G., Suttner, C.B.: The TPTP Problem Library: CNF Release v1.2.1. Journal of Automated Reasoning 21(2), 177–203 (1998)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Sutcliffe, G., Zimmer, J., Schulz, S.: TSTP Data-Exchange Formats for Automated Theorem Proving Tools. In: Zhang, W., Sorge, V. (eds.) Distributed Constraint Problem Solving and Reasoning in Multi-Agent Systems. Frontiers in Artificial Intelligence and Applications, vol. 112, pp. 201–215. IOS Press, Amsterdam (2004)Google Scholar
  21. 21.
    Urban, J.: MPTP - Motivation, Implementation, First Experiments. Journal of Automated Reasoning 33(3-4), 319–339 (2004)MATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Van Gelder, A., Sutcliffe, G.: Extending the TPTP Language to Higher-Order Logic with Automated Parser Generation. In: Furbach, U., Shankar, N. (eds.) IWSM 2000 (2006)Google Scholar
  23. 23.
    Zimmer, J.: A New Framework for Reasoning Agents. In: Sorge, V., Colton, S., Fisher, M., Gow, J. (eds.) Proceedings of the Workshop on Agents and Automated Reasoning, 18th International Joint Conference on Artificial Intelligence, pp. 58–64 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Geoff Sutcliffe
    • 1
  • Stephan Schulz
    • 2
  • Koen Claessen
    • 3
  • Allen Van Gelder
    • 4
  1. 1.University of MiamiUSA
  2. 2.Technische Universität MünchenGermany
  3. 3.Chalmers University of TechnologySweden
  4. 4.University of California at Santa CruzUSA

Personalised recommendations