Advertisement

A Resolution-Based Decision Procedure for \(\mathcal{SHOIQ}\)

  • Yevgeny Kazakov
  • Boris Motik
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)

Abstract

We present a resolution-based decision procedure for the description logic \(\mathcal{SHOIQ}\) — the logic underlying the Semantic Web ontology language \(\mathcal{OWLDL}\). Our procedure is goal-oriented, and it naturally extends a similar procedure for \(\mathcal{SHIQ}\), which has proven itself in practice. Applying existing techniques for deriving saturation-based decision procedures to \(\mathcal{SHOIQ}\) is not straightforward due to nominals, number restrictions, and inverse roles—a combination known to cause termination problems. We overcome this difficulty by using the basic superposition calculus, extended with custom simplification rules.

Keywords

Knowledge Base Inference Rule Decision Procedure Description Logic Predicate Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Armando, A., Ranise, S., Rusinowitch, M.: Uniform Derivation of Decision Procedures by Superposition. In: Fribourg, L. (ed.) CSL 2001 and EACSL 2001. LNCS, vol. 2142, pp. 549–563. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation and Applications. Cambridge University Press, Cambridge (2003)MATHGoogle Scholar
  3. 3.
    Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Google Scholar
  4. 4.
    Bachmair, L., Ganzinger, H.: Resolution Theorem Proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 2, vol. 1, pp. 19–99. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  5. 5.
    Bachmair, L., Ganzinger, H., Lynch, C., Snyder, W.: Basic Paramodulation. Information and Computation 121(2), 172–192 (1995)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fermüller, C., Tammet, T., Zamov, N., Leitsch, A.: Resolution Methods for the Decision Problem. In: Fermüller, C., Tammet, T., Leitsch, A., Zamov, N. (eds.) Resolution Methods for the Decision Problem. LNCS, vol. 679, Springer, Heidelberg (1993)Google Scholar
  7. 7.
    Ganzinger, H., de Nivelle, H.: A Superposition Decision Procedure for the Guarded Fragment with Equality. In: Proc. LICS 1999, Trento, Italy, July 2–5, 1999, pp. 295–305. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar
  8. 8.
    Haarslev, V., Timmann, M., Möller, R.: Combining Tableaux and Algebraic Methods for Reasoning with Qualified Number Restrictions. In: Proc. DL 2001. CEUR Workshop Proceedings, Stanford, CA, USA, August 1–3, 2001, vol. 49 (2001)Google Scholar
  9. 9.
    Haken, A.: The Intractability of Resolution. Theorerical Computer Science 39, 297–308 (1985)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Horrocks, I., Sattler, U.: A Tableaux Decision Procedure for SHOIQ. In: Proc. IJCAI 2005, Edinburgh, UK, July 30–August 5 2005, pp. 448–453. Morgan Kaufmann, San Francisco (2005)Google Scholar
  11. 11.
    Hustadt, U., Motik, B., Sattler, U.: Reducing SHIQ Description Logic to Disjunctive Datalog Programs. In: Proc. KR 2004, Whistler, Canada, June 2–5, 2004, pp. 152–162. AAAI Press, Menlo Park (2004)Google Scholar
  12. 12.
    Joyner Jr., W.H.: Resolution Strategies as Decision Procedures. Journal of the ACM 23(3), 398–417 (1976)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Kazakov, Y., de Nivelle, H.: A Resolution Decision Procedure for the Guarded Fragment with Transitive Guards. In: Basin, D., Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, pp. 122–136. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Motik, B.: Reasoning in Description Logics using Resolution and Deductive Databases. PhD thesis, Univesität Karlsruhe, Germany (2006)Google Scholar
  15. 15.
    Nieuwenhuis, R., Rubio, A.: Theorem Proving with Ordering and Equality Constrained Clauses. Journal of Symbolic Computation 19(4), 312–351 (1995)CrossRefMathSciNetGoogle Scholar
  16. 16.
    De Nivelle, H., Schmidt, R.A., Hustadt, U.: Resolution-Based Methods for Modal Logics. Logic Journal of the IGPL 8(3), 265–292 (2000)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Nonnengart, A., Weidenbach, C.: Computing Small Clause Normal Forms. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, ch. 6, vol. I, pp. 335–367. Elsevier, Amsterdam (2001)CrossRefGoogle Scholar
  18. 18.
    Pacholski, L., Szwast, W., Tendera, L.: Complexity Results for First-Order Two-Variable Logic with Counting. SIAM Journal on Computing 29(4), 1083–1117 (2000)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Pratt-Hartmann, I.: Complexity of the Two-Variable Fragment with Counting Quantifiers. Journal of Logic, Language and Information 14(3), 369–395 (2005)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Schmidt, R.A., Hustadt, U.: A Principle for Incorporating Axioms into the First-Order Translation of Modal Formulae. In: Baader, F. (ed.) CADE 2003. LNCS (LNAI), vol. 2741, pp. 412–426. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Tobies, S.: Complexity Results and Practical Algorithms for Logics in Knowledge Representation. PhD thesis, RWTH Aachen, Germany (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yevgeny Kazakov
    • 1
  • Boris Motik
    • 1
  1. 1.University of ManchesterUK

Personalised recommendations