Advertisement

Matrix Interpretations for Proving Termination of Term Rewriting

  • Jörg Endrullis
  • Johannes Waldmann
  • Hans Zantema
Part of the Lecture Notes in Computer Science book series (LNCS, volume 4130)

Abstract

We present a new method for automatically proving termination of term rewriting. It is based on the well-known idea of interpretation of terms where every rewrite step causes a decrease, but instead of the usual natural numbers we use vectors of natural numbers, ordered by a particular non-total well-founded ordering. Function symbols are interpreted by linear mappings represented by matrices. This method allows to prove termination and relative termination. A modification of the latter in which strict steps are only allowed at the top, turns out to be helpful in combination with the dependency pair transformation.

By bounding the dimension and the matrix coefficients, the search problem becomes finite. Our implementation transforms it to a Boolean satisfiability problem (SAT), to be solved by a state-of-the-art SAT solver. Our implementation performs well on the Termination Problem Data Base: better than 5 out of 6 tools that participated in the 2005 termination competition in the category of term rewriting.

Keywords

Proof Obligation Satisfying Assignment Termination Proof Dependency Pair Weakly Monotone 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theoretical Computer Science 236, 133–178 (2000)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
  3. 3.
    Eén, N., Biere, A.: Effective preprocessing in sat through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Endrullis, J.: Jambox: Automated termination proofs for string rewriting (2005), http://joerg.endrullis.de/
  5. 5.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: Combining techniques for automated termination proofs. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS (LNAI), vol. 3452, pp. 301–331. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Automated termination proofs with AProVE. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 210–220. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  8. 8.
    Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Hirokawa, N., Middeldorp, A.: Automating the dependency pair method. Information and Computation 199, 172–199 (2005)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Hirokawa, N., Middeldorp, A.: Tyrolean termination tool. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp. 175–184. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  11. 11.
    Hofbauer, D., Waldmann, J.: Proving termination with matrix interpretations. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proceedings of the 38th Design Automation Conference DAC 2001, pp. 530–535. ACM Press, New York (2001)CrossRefGoogle Scholar
  13. 13.
    Waldmann, J.: Matchbox: A tool for match-bounded string rewriting. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 85–94. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Zantema, H.: Termination of term rewriting: Interpretation and type elimination. Journal of Symbolic Computation 17, 23–50 (1994)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Zantema, H.: Termination. In: Term Rewriting Systems, by Terese, pp. 181–259. Cambridge University Press, Cambridge (2003)Google Scholar
  16. 16.
    Zantema, H.: Reducing right-hand sides for termination. In: Middeldorp, A., van Oostrom, V., van Raamsdonk, F., de Vrijer, R. (eds.) Processes, Terms and Cycles: Steps on the Road to Infinity. LNCS, vol. 3838, pp. 173–197. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jörg Endrullis
    • 1
  • Johannes Waldmann
    • 2
  • Hans Zantema
    • 3
  1. 1.Department of Computer ScienceVrije Universiteit AmsterdamAmsterdamThe Netherlands
  2. 2.Fb IMNHochschule für Technik, Wirtschaft und Kultur (FH) LeipzigLeipzigGermany
  3. 3.Department of Computer ScienceTechnische Universiteit EindhovenEindhovenThe Netherlands

Personalised recommendations