Skip to main content

Verifying Mixed Real-Integer Quantifier Elimination

  • Conference paper
Automated Reasoning (IJCAR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4130))

Included in the following conference series:

Abstract

We present a formally verified quantifier elimination procedure for the first order theory over linear mixed real-integer arithmetics in higher-order logic based on a work by Weispfenning. To this end we provide two verified quantifier elimination procedures: for Presburger arithmitics and for linear real arithmetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Appel, A.W., Felty, A.P.: Dependent types ensure partial correctness of theorem provers. J. Funct. Program 14(1), 3–19 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barendregt, H.: Reflection and its use: from science to meditation (2002)

    Google Scholar 

  3. Barendregt, H., Barendsen, E.: Autarkic computations in formal proofs. J. Autom. Reasoning 28(3), 321–336 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barras, B.: Programming and computing in HOL. In: Proceedings of the 13th International Conference on Theorem Proving in Higher Order Logics, pp. 17–37. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Berezin, S., Ganesh, V., Dill, D.L.: An online proof-producing decision procedure for mixed-integer linear arithmetic. In: Garavel, H., Hatcliff, J. (eds.) ETAPS 2003 and TACAS 2003. LNCS, vol. 2619, pp. 521–536. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Berghofer, S.: Towards generating proof producing code from HOL definitions. Private communication

    Google Scholar 

  7. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack, R. (eds.) TYPES 2000. LNCS, vol. 2277, pp. 24–40. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Bertot, Y., Castéran, P.: Coq’Art: The Calculus of Inductive Constructions. Text in theor. comp. science: an EATCS series, vol. XXV. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  9. Boigelot, B., Jodogne, S., Wolper, P.: An effective decision procedure for linear arithmetic over the integers and reals. ACM Trans. Comput. Log. 6(3), 614–633 (2005)

    Article  MathSciNet  Google Scholar 

  10. Chaieb, A., Nipkow, T.: Generic proof synthesis for presburger arithmetic. Technical report, Technische Universität München (2003)

    Google Scholar 

  11. Chaieb, A., Nipkow, T.: Verifying and reflecting quantifier elimination for Presburger arithmetic. In: Sutcliffe, G., Voronkov, A. (eds.) LPAR 2005. LNCS (LNAI), vol. 3835, Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Cooper, D.C.: Theorem proving in arithmetic without multiplication. In: Meltzer, B., Michie, D. (eds.) Machine Intelligence, vol. 7, pp. 91–100. Edinburgh University Press (1972)

    Google Scholar 

  13. Crégut, P.: Une procédure de décision réflexive pour un fragment de l’arithmétique de Presburger. In: Informal proceedings of the 15th journées francophones des langages applicatifs (2004) (In French)

    Google Scholar 

  14. Davis, M.: A computer program for presburger’s algorithm. In: Summaries of talks presented at the Summer Inst. for Symbolic Logic, Cornell University, Inst. for Defense Analyses, Princeton, NJ, pp. 215–233 (1957)

    Google Scholar 

  15. Ferrante, J., Rackoff, C.: A decision procedure for the first order theory of real addition with order. SIAM J. Comput. 4(1), 69–76 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  16. Ferrante, J., Rackoff, C.: The Computational Complexity of Logical Theories. Lecture Notes in Mathematics, vol. 718. Springer, Heidelberg (1979)

    MATH  Google Scholar 

  17. Fischer, R.: Super-exponential complexity of presburger arithmetic. In: SIAMAMS: Complexity of Computation: Proc. of a Symp. in Appl. Math. of the AMS and the Society for Industrial and Applied Mathematics (1974)

    Google Scholar 

  18. Fourier, J.: Solution d’une question particulière du calcul des inegalités. Nouveau Bulletin des Sciences par la Scociété Philomatique de Paris, pp. 99–100 (1823)

    Google Scholar 

  19. Harrison, J.: Metatheory and reflection in theorem proving: A survey and critique. Technical Report CRC-053, SRI Cambridge, Millers Yard, Cambridge, UK (1995), http://www.cl.cam.ac.uk/users/jrh/papers/reflect.dvi.gz

  20. Harrison, J.R.: Introduction to logic and theorem proving (to appear)

    Google Scholar 

  21. Howe, D.J.: Computational Metatheory in Nuprl. In: Lusk, E.L., Overbeek, R.A. (eds.) CADE 1988. LNCS, vol. 310, pp. 238–257. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  22. Klaedtke, F.: On the automata size for Presburger arithmetic. In: Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science (LICS 2004), pp. 110–119. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  23. Klapper, R., Stump, A.: Validated Proof-Producing Decision Procedures. In: Tinelli, C., Ranise, S. (eds.) 2nd Int. Workshop Pragmatics of Decision Procedures in Automated Reasoning (2004)

    Google Scholar 

  24. Loos, R., Weispfenning, V.: Applying linear quantifier elimination. Comput. J. 36(5), 450–462 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  25. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. . In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 295–314. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  26. McLauglin, S.: An Interpretation of Isabelle/HOL in HOL Light. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)

    Google Scholar 

  27. Nipkow, T., Paulson, L.C., Wenzel, M.T.: Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002), http://www.in.tum.de/~nipkow/LNCS2283/

    Book  MATH  Google Scholar 

  28. Norrish, M.: Complete integer decision procedures as derived rules in HOL. In: Basin, D., Wolff, B. (eds.) TPHOLs 2003. LNCS, vol. 2758, pp. 71–86. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  29. Obua, S., Skalberg, S.: Importing HOL into Isabelle/HOL. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  30. Oppen, D.C.: Elementary bounds for presburger arithmetic. In: STOC 1973: Proceedings of the fifth annual ACM symposium on Theory of computing, pp. 34–37. ACM Press, New York (1973)

    Chapter  Google Scholar 

  31. Presburger, M.: Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt. In: Comptes Rendus du I Congrès des Math. des Pays Slaves, pp. 92–101 (1929)

    Google Scholar 

  32. Pugh, W.: The Omega test: a fast and practical integer programming algorithm for dependence analysis. In: Proceedings of the 1991 ACM/IEEE conference on Supercomputing, pp. 4–13. ACM Press, New York (1991)

    Chapter  Google Scholar 

  33. Reddy, C.R., Loveland, D.W.: Presburger arithmetic with bounded quantifier alternation. In: STOC 1978: Proceedings of the tenth annual ACM symposium on Theory of computing, pp. 320–325. ACM Press, New York (1978)

    Chapter  Google Scholar 

  34. Skolem, T.: Über einige Satzfunktionen in der Arithmetik. In: Skrifter utgitt av Det Norske Videnskaps-Akademi i Oslo, I. Matematisk naturvidenskapelig klasse, volume 7, pp. 1–28. Oslo (1931)

    Google Scholar 

  35. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press (1951)

    Google Scholar 

  36. Weispfenning, V.: The complexity of linear problems in fields. J. Symb. Comput. 5(1/2), 3–27 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  37. Weispfenning, V.: The complexity of almost linear diophantine problems. J. Symb. Comput. 10(5), 395–404 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  38. Weispfenning, V.: Mixed real-integer linear quantifier elimination. In: ISSAC ’99: Proceedings of the 1999 international symposium on Symbolic and algebraic computation, pp. 129–136. ACM Press, New York (1999)

    Chapter  Google Scholar 

  39. Wolper, P., Boigelot, B.: An automata-theoretic approach to presburger arithmetic constraints (extended abstract). In: Mycroft, A. (ed.) SAS 1995. LNCS, vol. 983, pp. 21–32. Springer, Heidelberg (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chaieb, A. (2006). Verifying Mixed Real-Integer Quantifier Elimination. In: Furbach, U., Shankar, N. (eds) Automated Reasoning. IJCAR 2006. Lecture Notes in Computer Science(), vol 4130. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11814771_43

Download citation

  • DOI: https://doi.org/10.1007/11814771_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-37187-8

  • Online ISBN: 978-3-540-37188-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics